INTRODUCTION

We would like to thank you for buying an FPT product, and compliment you on your choice of engine. Before you carry out any operation involving the engine or its fittings, please read the contents of this manual carefully; compliance with the instructions provided in the manual is the best way to guarantee trouble-free, long term operation of the engine.

The contents of this manual refer to the standard configuration of the engine, and the illustrations are purely indicative. Some instructions are provided by giving the sequence of operations to be carried out in order to allow the engine and/or its fittings to perform in a certain way. In some cases they will be dependent on the configuration of the commands and the set-up of the vehicle on which the engine is installed; for any points that differ from the contents of this manual, please consult the instructions provided by the vehicle Manufacturer or a specific manual.

The information provided below was current at the date of publication.

The Manufacturer reserves the right to make modifications at any time without prior notice, for technical or commercial reasons or to update the engines to comply with legal requirements in the various Countries.

The Manufacturer declines all liability for any errors or omissions.

Please remember that the IVECO MOTORS-FPT Technical Service Network is available to offer you its experience and professional skills, wherever you may be.
TABLE OF CONTENTS

- **GENERAL INFORMATION** .. 3
 - Guarantee ... 3
 - Spare parts ... 3
 - Liability ... 3
 - Safety ... 3
 - N40 EURO 5 engine Technical data 4
 - N60 EURO 5 engine Technical data 9
 - Labels ... 12
- **USE** ... 13
 - Preliminary checks .. 13
 - For proper use of the engine 18
 - Special warnings .. 18
 - Running-in .. 21
- **INSPECTIONS AND MAINTENANCE** 24
 - Maintenance personnel .. 24
 - Accident prevention ... 24
 - Frequency ... 25
 - How to ... 28
 - Moving the engine .. 35
 - Disposal of waste .. 36
- **LONG ENGINE INACTIVITY** ... 37
 - Preparing the engine for a long period of inactivity 37
 - Restarting the engine after a long period of inactivity 38
- **ENGINE MALFUNCTIONS** .. 39
- **BEHAVIOUR IN AN EMERGENCY** 41
GENERAL INFORMATION

GUARANTEE
In order to ensure that your engine gives the best possible performance and to take advantage of the FPT guarantee, you must follow the indications provided in this publication with great care; failure to do so may result in invalidation of the guarantee.

SPARE PARTS
Always use Original FPT Spare parts. This is essential to keep the engine in original running order.
The use of non-original spare parts will not only invalidate the guarantee, but will mean that FPT will not be considered liable in any way during the whole working life of the engine.

LIABILITY
The Manufacturer will only be considered liable subject to performance of the control and maintenance operations indicated and described in this manual; to this effect, proof that these operations have been performed must be provided. Any special maintenance operations that may be necessary must be carried out by qualified technicians from FPT Network or other specialised workshops, using the instruments and equipment provided for the purpose.

SAFETY
The following information is intended to encourage caution when using the engine, so as to avoid damage to persons or property as a result of improper or incorrect behaviour.

- The engines must only be used for the purposes indicated by the Manufacturer.
- Any tampering, modification and use of non-original spare parts may compromise proper operation and safe use of the engine; never, under any circumstances make modifications to the wiring and to the units equipping the engine, or connect them to other power systems.
- Pay particular attention to moving parts of the engine, to high temperature components and to circuits containing pressurised fluids; its electrical equipment houses electrical currents and voltage.
- Engine exhaust gases can be dangerous for health.
- The operations required to guarantee the best possible use and preservation of the engine must only be carried out by persons of proven experience, equipment with tools considered suitable by FPT approved staff.

See INSPECTIONS AND MAINTENANCE for further safety recommendations.
N40 EURO 5 ENGINE TECHNICAL DATA

The technical code and serial number are indicated on a plate, which is located on different parts of the engine, according to the model: flywheel casing, tappet cover, other.

<table>
<thead>
<tr>
<th>Code</th>
<th>N40 EURO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine family</td>
<td>F4</td>
</tr>
<tr>
<td>Cycle</td>
<td>4-Stroke Diesel</td>
</tr>
<tr>
<td>Number and arrangement of cylinders</td>
<td>4, in line</td>
</tr>
<tr>
<td>Bore x Stroke</td>
<td>102 x 120 mm</td>
</tr>
<tr>
<td>Total displacement</td>
<td>3,920 cm³</td>
</tr>
<tr>
<td>Air supply</td>
<td>Supercharged and Aftercooled</td>
</tr>
<tr>
<td>Injection type</td>
<td>Common Rail with electronic management</td>
</tr>
<tr>
<td>Engine rotation direction</td>
<td>Counter-clockwise (seen from flywheel side)</td>
</tr>
<tr>
<td>Dry weight</td>
<td>390 kg</td>
</tr>
<tr>
<td>Electrical system</td>
<td>24 V (rated)</td>
</tr>
<tr>
<td>Alternator</td>
<td>28 V - 70 A / 90 A</td>
</tr>
<tr>
<td>Starter motor</td>
<td>24 V - 4 kW</td>
</tr>
</tbody>
</table>

(*) Flywheel net performance compliant with ISO 3046-1 standard. Testing conditions: T 25°C; atmospheric pressure 100 kPa; relative humidity 30%.

Performance (*):

<table>
<thead>
<tr>
<th>Performance</th>
<th>Maximum power</th>
<th>Maximum torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROS 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103 kW (140 HP)</td>
<td>@ 2700 rpm</td>
<td>460 Nm (46.89 kgm)</td>
</tr>
<tr>
<td>118 kW (160 HP)</td>
<td>@ 2700 rpm</td>
<td>530 Nm (54.03 kgm)</td>
</tr>
<tr>
<td>130 kW (177 HP)</td>
<td>@ 2700 rpm</td>
<td>570 Nm (58.10 kgm)</td>
</tr>
<tr>
<td>134 kW (182 HP)</td>
<td>@ 2700 rpm</td>
<td>610 Nm (62.18 kgm)</td>
</tr>
<tr>
<td>110 kW (150 HP)</td>
<td>@ 2500 rpm</td>
<td>600 Nm (61.16 kgm)</td>
</tr>
</tbody>
</table>

WARNING!

It is strictly forbidden to alter the above mentioned features and more specifically to change the information stored in the electronic units of the injection system or the engine and relevant fitting features. Any non observance of the above shall null any warranty and FPT liability.
N40 EURO 5 Engine

N40 EURO 5 Engine

N40 EURO 5 Engine

N40 EURO 5 Engine

N40 Engine F4AE3482

N40 Engine F4AE3482
N40 Engine F4AE3482

N40 Engine F4AE3482
N60 EURO 5 ENGINE TECHNICAL DATA

The technical code and serial number are indicated on a plate, which is located on different parts of the engine, according to the model: flywheel casing, tappet cover, other.

<table>
<thead>
<tr>
<th>Code</th>
<th>N60 EURO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine family</td>
<td>F4</td>
</tr>
<tr>
<td>Cycle</td>
<td>4-Stroke Diesel</td>
</tr>
<tr>
<td>Number and arrangement of cylinders</td>
<td>6, in line</td>
</tr>
<tr>
<td>Bore x Stroke</td>
<td>102 x 120 mm</td>
</tr>
<tr>
<td>Total displacement</td>
<td>5,900 cm³</td>
</tr>
<tr>
<td>Air supply</td>
<td>Supercharged and Aftercooled (TCA or TAA)</td>
</tr>
<tr>
<td>Injection type</td>
<td>Common Rail with electronic management</td>
</tr>
<tr>
<td>Engine rotation direction</td>
<td>Counter-clockwise (seen from flywheel side)</td>
</tr>
<tr>
<td>Dry weight</td>
<td>500 kg</td>
</tr>
<tr>
<td>Electrical system</td>
<td>24 V (rated)</td>
</tr>
<tr>
<td>Alternator</td>
<td>28 V - 70 A / 90A</td>
</tr>
<tr>
<td>Starter motor</td>
<td>24 V - 4 kW</td>
</tr>
</tbody>
</table>

Performance (※)

<table>
<thead>
<tr>
<th></th>
<th>Maximum power</th>
<th>Maximum torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>135 kW (184 HP)</td>
<td>650 Nm (66.26 kgm)</td>
</tr>
<tr>
<td></td>
<td>160 kW (218 HP)</td>
<td>680 Nm (69.32 kgm)</td>
</tr>
<tr>
<td></td>
<td>185 kW (252 HP)</td>
<td>850 Nm (86.65 kgm)</td>
</tr>
<tr>
<td></td>
<td>205 kW (279 HP)</td>
<td>950 Nm (96.84 kgm)</td>
</tr>
<tr>
<td></td>
<td>220 kW (299 HP)</td>
<td>1050 Nm (107.03 kgm)</td>
</tr>
<tr>
<td></td>
<td>160 kW (218 HP)</td>
<td>680 Nm (69.32 kgm)</td>
</tr>
<tr>
<td></td>
<td>194 kW (264 HP)</td>
<td>1000 Nm (101.94 kgm)</td>
</tr>
<tr>
<td></td>
<td>220 kW (299 HP)</td>
<td>1050 Nm (107.03 kgm)</td>
</tr>
</tbody>
</table>

(※) Flywheel net performance compliant with ISO 3046-1 standard. Testing conditions: T 25°C; atmospheric pressure 100 kPa; relative humidity 30%.

WARNING!

It is strictly forbidden to alter the above mentioned features and more specifically to change the information stored in the electronic units of the injection system or the engine and relevant fitting features. Any non observance of the above shall void any warranty and FPT liability.
N60 EURO 5 Engine

N60 EURO 5 Engine

N60 EURO 5 Engine

N60 EURO 5 Engine
LABELS
On the engine or on its parts, warnings may be available. The meaning is illustrated hereunder.
NOTE: The indications with an exclamation mark highlight a potential danger.

Lifting point (engine only).

Fuel refill plug (on tank, if available).

Lubricant refill plug.

Lubricating oil dip-stick.

Burn hazard: Pressurised hot water expulsion.

Burn hazard: High temperature parts.

Fire hazard: Fuel presence.

Hazard of collision and contact with moving parts: Presence of fans, pulleys, belts or other.
USE

PRELIMINARY CHECKS
Before each engine start-up:

- Check and refill technical fluids level if necessary (fuel, engine oil and coolant).
- Make sure that the air aspiration filter is not clogged or obstructed. If the engine is equipped with an electrical blockage sensor, an alarm will be displayed on start-up by means of the indicator light on the instrument panel.

NOTE: The current document refers only to the standard engine configuration and does not contain any explanation related to the checks of the power train parts and components installed on the engine. Refer to the corresponding documentation of the manufacturer for any information about those systems.

CAUTION!

Make sure that no combustible vapours or gasses are present in the area in which the engine is to operate. Ensure that closed areas are adequately ventilated and fitted with a suitable exhaust extraction system.

STARTING AND STOPPING THE ENGINE
The start-up and shut-down operations described below are applicable if is available on-board a key switch that is peculiar to automotive application; if the Manufacturer of the vehicle or machine has fitted a customised instrument panel, these operations may vary according to the various choices made during manufacturing.

In these cases, follow the start-up/shut-down sequences and use the instrument panel description provided in the specific documentation.

Starting the engine
1. Insert the key into the switch (1) and turn it to the right to position 1B RUN. Once the indicator lights have been tested, check the plausibility of the indications on the dashboard.
2. In the event that the engine is equipped with the preheating system (optional), and the engine temperature is lower to the minimum switch-on threshold, it is necessary to wait for the relevant indicator light switching from the “on” state to the “blinking” one.
3. Turn the key to position 1C START and release it once the engine has started, without accelerating.
4. In the event that the efficiency indicators such as the “Accumulator recharge” or “Oil pressure” are available on the on-board equipment, check that the operation status is appropriate. If the pre-heating system is enabled, the relevant indicator will turn on again to indicate that the post-heating phase is in progress; the duration of this function is proportional to the temperature value.
5. If the engine does not start, after releasing the key it will only be possible to turn it back to the start position after first returning the switch to the rest position 1A.

![Detail of the key switch](image)

1A REST position allowing the key to be removed
1B Stable RUN position
1C Unstable START position

Stopping the engine
Before stopping the engine it is recommended to keep it running at idle and unloaded for a few minutes; this will allow a uniform decrease of temperature and avoid harmful thermal shocks.

Shutting down the engine:
- Turn the key switch to position 1A REST.

Restarting the engine:
1. Return the key switch from the position 1A to position 1B only after a few minutes.
2. Turn the key to position 1C START and release it once the engine has started, without accelerating.
3. Proceed as described previously.

Starting the engine at low temperatures
The electrical device - managed by the Electronic Control Unit controlling the engine - for the preheating of the inducted air is used to assist the starting of the engine at low temperatures. In the event that the starting of the engine is not requested anymore after the key has been turned on the position 1B RUN, the device will be disabled while the relevant indicator light is blinking. Proceed to the next starting repeating the sequence beginning with the key on the position 1A REST.

EDC indicator light - Electronic Diesel Control (if applicable)
In the event that, after the starting phase, the EDC indicator light is on, contact the Technical Service Network asking for instructions. The anomaly state - detected by the electronic unit managing the engine - may allow the vehicle to reach the Technical Service Centre (for more information see the section ENGINE MALFUNCTIONS).

CAUTION!

In the event of momentary stoppages of the engine, check for any alarm signals. Do not restart the engine until the cause of the problem has been removed or proper operating conditions have been restored.
Starting from engine compartment

Some vehicles can carry out the starting and stopping procedure by means of push-buttons located in the engine compartment. The modality for using them may vary according to the choices realized by the vehicle manufacturer.

ENGINE RPM AND SPEED MANAGEMENT - PTO / CRUISE CONTROL (optional)

Some vehicles are equipped with optional controls through which they manage the engine rpm or the vehicle speed. Management is done manually by using the push-buttons located near the steering wheel or another suitable position; here are their functions:

- **ON+** Increase rpm or speed (1)
- **ON -** Decrease rpm or speed (2)
- **RESUME** Save a new data or recall the last data setting (3)
- **OFF** Disable the function currently active (4)

ENGINE RPM AND SPEED MANAGEMENT - PTO / CRUISE CONTROL (optional)

Some vehicles are equipped with optional controls through which they manage the engine rpm or the vehicle speed. Management is done manually by using the push-buttons located near the steering wheel or another suitable position; here are their functions:

- **ON+** Increase rpm or speed (1)
- **ON -** Decrease rpm or speed (2)
- **RESUME** Save a new data or recall the last data setting (3)
- **OFF** Disable the function currently active (4)

WARNING!

Pay the maximum attention so that by using the push-buttons the necessary safety prescriptions are observed in order not to endanger human life and properties. Make provision that the vehicle can not move locking it by means of appropriate wedges.

Engine idle adjustment (if foreseen)

The procedure here below will be triggered only if the engine temperature exceeds 30 °C and the vehicle is parked.

1. Start the engine and keep it at idle without accelerating.
2. Press the brake pedal and keep it pressed during the entire procedure is completed.
3. Press the RESUME button for 3 seconds, and check for any variation in the engine rpm.
4. Act on the ON + or ON – buttons to adjust the engine rpm at the desired value. The engine speed will change by about 20 rpm each time the button is pressed.
5. Once the desired speed is achieved, press the RESUME button for about 5 seconds.
6. Release the brake pedal.

The set and saved speed will be the one achieved at each successive start.
If the procedure is not carried out correctly and/or anomalies during its execution, the previously set value will remain valid and in use.
If foreseen, during the procedure, the relevant icon appears on the display.

Engine speed setting with the POWER TAKE-OFF engaged (if foreseen)

The procedure described here below will become effective only if the temperature of the engine exceeds 30 °C and the vehicle is parked.
1. Start the engine and wait until the pre-set idle speed stabilizes itself.
2. Enable the PTO following the instructions illustrated in the relevant documentation.
3. Press the brake pedal.
4. Make sure the EDC warning light is off.

5. Act on the ON + or ON – buttons to adjust the speed at the desired value or press the RESUME button for 1 second to recall the value previously set.
6. Press the RESUME button for about 5 seconds to save the new value.
7. Release the brake pedal making sure that the parking brake is applied.

If foreseen. During the procedure, the relevant icon appears on the display.

Speed adjustment or CRUISE CONTROL (if foreseen)

The CRUISE CONTROL function allows to set/modify the vehicle speed without using the accelerator pedal. The CRUISE CONTROL should not be used under heavy traffic conditions or on roads where the driver must have a constant control on the vehicle speed.

The function is active only if the following conditions are met:
- Vehicle speed exceeding 30 km/h;
- The brake pedal has been pressed at least once;
- No engine brake controls;
- Vehicle in motion with the transmission gear engaged;
- Brake pedal not pressed;
- Engine brake not activated.

In cases where the vehicle speed exceeds 2 km/h with respect to the set one (i.e.: downhill), the Electronic Unit automatically engages the engine brake in order to take the vehicle back to the set speed.
ON + button:
- Pressed only once, it allows the release of the accelerator pedal and to retain the speed achieved at that moment by the vehicle.
- Kept pressed, after the first time, it allows to increase the speed of the vehicle without intervening on the accelerator pedal.

ON - button:
- Pressed after the ON + button it allows to decrease the speed of the vehicle.

RESUME button:
- Pressed while driving, it recalls the last saved speed value setting. The vehicle will achieve the set speed depending on the selected transmission gear.

OFF button:
- It disengages the CRUISE CONTROL function.

Tip function:
- By shortly pressing the ON + or ON - button, the vehicle speed varies by 1 km/h (i.e. at the speed of 60 km/h, by pressing ON + three times the vehicle reaches 63 km/h; by pressing ON - 57 km/h).

If foreseen, during procedures, the relevant icon appears on the display.

Disabling the CRUISE CONTROL
The function is automatically disabled in the following cases:
- When 2850 rpm are reached.
- By actuating the brake pedal (permanent disengagement).
- By actuating the clutch pedal.
- By actuating the engine brake (permanent disengagement).
- When the minimum engagement speed is reached.
- By actuating the accelerator pedal to reach a higher speed with respect to the set one:
 a) If the action lasts less than 3 minutes, the function temporarily disengages and when the pedal is released the Electronic Unit takes the vehicle back to the speed previously set;
 b) If the action lasts more than 3 minutes, the CRUISE CONTROL function is permanently disengaged.

Speed limiter (if foreseen)
The Electronic Unit is programmed to limit the speed of the vehicle within the values prescribed by law in the different countries. When the limit value is reached, the accelerator pedal will not have any effect on the increase of the fuel delivery.
If foreseen, the relevant icon appears on the display.
FOR PROPER USE OF THE ENGINE

- Do not leave the key turned to the start position 1C, when the engine has been started.
- It is not efficient to leave the engine running at idle while waiting for it to reach the proper working temperature; it is preferable that, after approximately one minute from start-up, you gradually increase the engine load.
- Do not leave the engine running at minimum speed for a long time as this does not guarantee a smooth engine operation.
- The engine speed must be increased and decreased gradually, to allow a proper operation of all engine components.
- The running speed and power values must comply with the specifications of the technical and commercial documentation.

During use, check that:
1. The engine coolant temperature does not reach the alarm threshold.
2. The oil pressure remains within normal values.

If the temperature is considered too high, reduce speed and stop to check the state of the cooling system circuits; also check and have checked:
 a) the tension of the auxiliary member drive belt;
 b) operation of the thermostatic valve;
 c) whether or not the heat exchanger is clean.

SPECIAL WARNINGS

Coolant circuit

When a state of “Coolant temperature high” is found, this triggers off the limitation of the maximum power of the engine. In these cases check the efficiency of the circuit components, remembering that when the engine is warm, a pressure liable to cause hot liquid to be expelled with extreme violence is created within the cooling circuits. This results in a danger of burning.

<table>
<thead>
<tr>
<th>CAUTION!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only open the coolant tank cap if strictly necessary, and only when the engine is cold.</td>
</tr>
</tbody>
</table>

Lubrication circuit

When a state of “Oil pressure low”, is found, this triggers off the stoppage of the engine; in this case, check the oil level and top up if necessary, following the instructions given in the chapter on INSPECTIONS AND MAINTENANCE.

If the condition persists, contact a Service Centre.

Fuel circuit

Avoid using the engine with only a small reserve of fuel in the fuel tank; this encourages the formation of condensation and makes it more likely you will suck up dirt or air, resulting in engine stoppage.
Electrical system of the engine

Periodically check, particularly during the winter, to ensure that the batteries are clean and in full working order, checking and topping up as indicated in the chapter INSPECTIONS AND MAINTENANCE.

Remember that the engine Electronic control units are programmed to increase the running speed at idle if the voltage in the electrical system reaches values considered to be at the limits of efficiency. In this case, check the efficiency of the battery/ies and if necessary perform a check-up on the system components.

Should it be necessary to replace the batteries, always respect the capacity and minimum discharge current intensity requirements.

CAUTION!

When refuelling, always pay great care to ensure that no solid or liquid pollutants enter the fuel tank; you must also remember that smoking and live flames are prohibited when refuelling.

CAUTION!

Never loosen the high pressure fuel circuit connectors in any way.

WARNING!

Contact a specialised workshop and check battery and recharging system efficiency if the voltmeter indicates a voltage below 11 V (for 12 V rated systems), or 22 V (for 24 V rated systems).

CAUTION!

The batteries contain an acid solution that will burn the skin and corrode clothing; when checking them, always wear protective clothing, gloves and goggles, do not smoke or use live flames in the vicinity, and make sure that the room they are housed in is adequately ventilated.

Air intake and exhaust gas circuit

Inspect the cleanliness of the air intake circuit on a regular basis. The maintenance intervals indicated in this manual vary according to the conditions in which the engine is used.

In particularly dusty environments it is necessary to carry out maintenance at more frequent intervals; with respect to the indications provided in the chapter INSPECTIONS AND MAINTENANCE.

CAUTION!

Visually check that the exhaust circuit is not blocked or damaged, so as to prevent dangerous fumes.
Emergency starting

If the battery is low, it is possible to start the engine using an auxiliary battery equivalent to the on-board battery as to electrical specifications. Observe the following instructions:

- Disconnect all the electrical devices that are currently not essential.
- Connect through an appropriate cable the positive pole of the auxiliary battery to the positive pole of the on-board battery.
- Connect through another appropriate cable the negative pole of the auxiliary battery to the negative pole of the on-board battery, preferably to an electrical ground of the vehicle located near the starter motor.
- Start the engine and remove the auxiliary cables within minutes, following the previous connection procedure in reverse order.
- If the engine does not start after various attempts, it is recommended contacting the Service Centre for adequate servicing.

The push-start is not advisable but possible if the battery can supply enough energy to the Electronic units, engine and vehicle actuators by enabling a smooth operation.

Prescriptions for maintenance operations

In order to avoid damaging or demeaning the functioning of the Electronic units equipping the engine or the vehicle, observe the following prescriptions:

- Do not disconnect the battery connections with the engine running or with the key switch in position RUN.
- Do not disconnect the connectors of the Electronic units with the engine running or with the key switch in position RUN. If necessary, perform the operation within minutes after having set the key switch in the stop position and shut down the engine.
- Disconnect the battery from the on-board system in the event that a recharge is necessary.
- After every maintenance operation involving disconnection of the battery/ies, make sure that the terminals have been properly tightened onto the poles again.
- Carrying out arc welding operations by building or repairing the vehicle, disconnect the positive terminal from the battery and connect it to the electrical ground, remove the connections from the Electronic units observing the information supplied. If the welding operations involve parts in the proximity of Electronic units, disassemble them from the vehicle.

CAUTION!

It is forbidden to start the engine using “quick battery charger” in order to avoid damaging the Electronic units equipping the engine and vehicle.

WARNING!

Connect the auxiliary battery without removing the connections of the on-board battery.
Carry out direct current weldings being careful to connect the ground terminal in the proximity of the concerning point.

Do not paint appliances, components and electrical connectors equipping the engine.

Remove from the vehicle any Electronic units if it has to be exposed to temperatures above 80 °C.

It is desirable disconnect the negative pole of the battery before carrying out operations involving the electrical system of the vehicle.

Safeguarding the anti-pollution devices

The proper operation of the anti-pollution devices ensures the protection of the environment and the best engine performance as well. Keeping them in good state is then essential for an economic and environment-friendly driving.

CAUTION!

Never spray with detergents or wash the engine when equipped with the electronic systems or electrical components. For requests for information contact a Service Centre.

Catalytic converter - SCR - (if available)

The Selective Catalytic Reduction (SCR) system - reducing the contaminants in the exhaust gas - is required to transform the contaminants produced in the engine during the combustion in non-toxic substances. The reduction process occurs in the catalytic converter thanks to the environment-friendly additive AdBlue injected in the exhaust gas duct by an appropriate metering solenoid valve. The system is subjected to periodic maintenance and, furthermore, the Electronic unit managing the engine monitors the efficiency of the whole system by means of an auto-diagnosis strategy, communicating whether a maintenance is necessary or not.

In order to reach the best efficiency for the conversion and life of the system components it is necessary to strictly observe the scheduled maintenance plan. Making provision that the system is always efficient and supplying it with a proper quantity of additive is guarantee of acting in observance of the regulations, which the engine have been homologated for.

RUNNING-IN

Thanks to the engine construction advanced technology, non special running-in procedure is required. However it is recommended to avoid at least for the first 50 hours, using the engine at high speeds for extended periods of time.
REFILLING

<table>
<thead>
<tr>
<th>Parts to be refilled</th>
<th>N40 EURO5 litres (kg)</th>
<th>N60 EURO5 litres (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling circuit (1)</td>
<td>8.5</td>
<td>10</td>
</tr>
<tr>
<td>Total capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubrication circuit (2)</td>
<td>9.5 (8.6)</td>
<td>13.1 (11.8)</td>
</tr>
<tr>
<td>Total capacity (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodical replacement:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil sump at minimum level</td>
<td>5.3 (4.8)</td>
<td>8 (7.2)</td>
</tr>
<tr>
<td>Oil sump at maximum level</td>
<td>8.3 (7.5)</td>
<td>10.8 (9.7)</td>
</tr>
<tr>
<td>Power steering oil (4)</td>
<td>(6)</td>
<td>(6)</td>
</tr>
<tr>
<td>Fuel tank (5)</td>
<td>(6)</td>
<td>(6)</td>
</tr>
<tr>
<td>Urea tank (7)</td>
<td>(6)</td>
<td>(6)</td>
</tr>
</tbody>
</table>

The amounts indicated relate to the standard configuration of the engine only.

(1) Use a water and PARAFLU 11 mixture at 50% also during summer. As an alternative to PARAFLU 11, use a product complying with SAE J 1034 international standards.

(2) Use lubricants complying with the following international specifications: ACEA E7-E4 (associated to fuels with a sulphide percentage of < 0.5%), MIL - L - 2104 F. Using oil with different specifications reduces the replacement interval.

The grade of viscosity to be used in relation to environment temperature can be found in the table in the appendix.

The oil consumption is considered as acceptable up to a quantity equal to 0.5% of fuel consumption.

(3) The quantities shown refer to the first refilling and concern the refilling of engine, oil sump and filter.

(4) It is recommended the use of Tutela GI/A or product complying with the ATF DEXRON IID standard.

(5) Use STANDARD fuel compliant to the EN 590 (2005/55 - 2005/78). The use of additives is discouraged. A fuel known as BIO DIESEL is allowed only if it is compliant with the EN 14214 norm, mixed in standard fuel with a maximum percentage of 5%. KEROSENE-based fuel known as XF63, F63, F34, F35, JP8 is not allowed. Mixtures containing water as in a boil are not allowed, as shown in the CUNA NC 637-01 (GECAM) and AFNORM 5-02 (AQUAZOLE) norms.

(6) Refer to the indications of the vehicle manufacturer.

(7) Using the environment-friendly additive AdBlue is recommended. It is available in the refuelling and service stations. AdBlue is a brand-name of a non-toxic, inodour and non-flammable solution of water and urea.

WARNING!

Refuelling from drums or tanks may result in pollution of the diesel fuel, with the risk of damage to the injection system; if necessary, filter the fuel in a suitable manner or allow sedimentation of the impurities before refuelling.
Low temperature diesel oil

EN590 specifications distinguish different classes of diesel fuel, identifying the characteristics of those best suited to low temperatures.
It is entirely up to the Oil companies to comply with these regulations, which foresee that fuels suited to the climactic and geographic conditions of the various Countries be distributed.
MAINTENANCE PERSONNEL

The engine control and maintenance operations described in the following chapter require training, experience and compliance with current safety regulations; for this reason they must be carried out by special technicians, as indicated below.

- **Inspections**: by workshop technicians or the vehicle user if necessary.
- **Periodic maintenance**: by qualified personnel equipped with suitable equipment and adequate means of protection. Operations marked by the spanner symbol.
- **Extraordinary maintenance**: by qualified Service Centre personnel with specific technical information and equipment. Operations marked by the spanner symbol.

The most qualified Assistance Centres are those which make up the FPT Technical Assistance Network.

ACCIDENT PREVENTION

- Always wear safety shoes and overalls.
- Do not wear loose garments, rings, bracelets and/or necklaces near the engines or moving parts.
- Wear safety gloves and goggles when:
 - refilling batteries with acid solution
 - refilling with inhibitors or deicers

- replacement or refilling of lubricants (hot engine oil can cause burns. Only carry out these operations when the oil has dropped to a temperature of below 50°C).
- When working in the engine compartment, pay particular attention to how you move, to avoid contact with moving parts or components at high temperature.
- Wear goggles when using high pressure air jets (maximum air pressure used to clean is 200 kPa (2 bar, 30 psi, 2 kg/cm²)).
- Wear a protective helmet when working in an area where there are suspended loads or systems installed at head-height.
- Use protective hand creams.
- Replace wet overalls immediately.
- Always keep the engine clean, removing oil, grease and coolant stains.
- Store cloths in flame-proof containers.
- Do not leave foreign bodies on the engine.
- Use suitable, safe containers for used oil.
- When completing a repair, make suitable provisions to stop the engine taking in air if, after start-up, an uncontrolled increase in engine speed were to occur.
FREQUENCY

The maintenance intervals indicated below take into account the typical working factors for various types of engine use; the most suitable interval for maintenance operations for the various applications will be indicated by the maintenance staff, according to the way and working conditions in which the engine is used.

<table>
<thead>
<tr>
<th>Checks</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check oil level in engine</td>
<td>Every trip</td>
</tr>
<tr>
<td>Check coolant level</td>
<td>Every trip</td>
</tr>
<tr>
<td>Drain water from the fuel filter</td>
<td>Weekly</td>
</tr>
<tr>
<td>Check power steering oil</td>
<td>Half-yearly</td>
</tr>
<tr>
<td>Check/top up electrolyte level in batteries and clean terminals</td>
<td>Half-yearly</td>
</tr>
</tbody>
</table>

Frequencies valid for vehicles used on long distances (international service)

<table>
<thead>
<tr>
<th>Periodic maintenance</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdBlue pre-filter cleaning</td>
<td>3 months</td>
</tr>
<tr>
<td>Check belt tension and conditions</td>
<td>80,000 Km</td>
</tr>
<tr>
<td>Engine oil replacement</td>
<td>80,000 Km</td>
</tr>
<tr>
<td>Oil filter replacement</td>
<td>80,000 Km</td>
</tr>
<tr>
<td>Blow-by filter replacement</td>
<td>80,000 Km</td>
</tr>
<tr>
<td>EDC and AdBlue system check-up</td>
<td>80,000 Km</td>
</tr>
<tr>
<td>Fuel filter replacement</td>
<td>160,000 Km</td>
</tr>
<tr>
<td>Fuel pre-filter replacement</td>
<td>160,000 Km</td>
</tr>
<tr>
<td>AdBlue system pre-filter and filter replacement</td>
<td>160,000 Km</td>
</tr>
<tr>
<td>Auxiliary member drive belt</td>
<td>240,000 Km</td>
</tr>
<tr>
<td>Air filter cleaning</td>
<td>Yearly</td>
</tr>
<tr>
<td>Check coolant density</td>
<td>Yearly</td>
</tr>
<tr>
<td>Air filter replacement and housing cleaning</td>
<td>2 years</td>
</tr>
<tr>
<td>Coolant replacement</td>
<td>2 years</td>
</tr>
<tr>
<td>Power steering oil replacement</td>
<td>3 years</td>
</tr>
</tbody>
</table>
Frequencies valid for vehicles used on medium distances
(regional/interregional service)

<table>
<thead>
<tr>
<th>Periodic maintenance</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdBlue pre-filter cleaning</td>
<td>3 months</td>
</tr>
<tr>
<td>Check belt tension and conditions</td>
<td>60,000 Km</td>
</tr>
<tr>
<td>Engine oil replacement</td>
<td>60,000 Km (2) (3)</td>
</tr>
<tr>
<td>Oil filter replacement</td>
<td>60,000 Km (2) (3) (4)</td>
</tr>
<tr>
<td>Blow-by filter replacement</td>
<td>60,000 Km (3)</td>
</tr>
<tr>
<td>EDC and AdBlue system check-up</td>
<td>60,000 Km (3)</td>
</tr>
<tr>
<td>Fuel filter replacement</td>
<td>120,000 Km (1) (2) (4)</td>
</tr>
<tr>
<td>Fuel pre-filter replacement</td>
<td>120,000 Km (1) (2)</td>
</tr>
<tr>
<td>AdBlue system pre-filter and filter replacement</td>
<td>120,000 Km</td>
</tr>
<tr>
<td>Auxiliary member drive belt</td>
<td>240,000 Km</td>
</tr>
<tr>
<td>Air filter cleaning</td>
<td>Yearly</td>
</tr>
<tr>
<td>Check coolant density</td>
<td>Yearly</td>
</tr>
<tr>
<td>Air filter replacement and housing cleaning</td>
<td>2 years (5)</td>
</tr>
<tr>
<td>Coolant replacement</td>
<td>2 years</td>
</tr>
<tr>
<td>Power steering oil replacement</td>
<td>3 years (2)</td>
</tr>
</tbody>
</table>

Frequencies valid for heavy-duty vehicles
(urban area and off-road service)

<table>
<thead>
<tr>
<th>Periodic maintenance</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdBlue pre-filter cleaning</td>
<td>3 months</td>
</tr>
<tr>
<td>Check belt tension and conditions</td>
<td>40,000 Km/800 hours</td>
</tr>
<tr>
<td>Engine oil replacement</td>
<td>40,000 Km/800 hours (2) (3)</td>
</tr>
<tr>
<td>Oil filter replacement</td>
<td>40,000 Km/800 hours (2) (3) (4)</td>
</tr>
<tr>
<td>Blow-by filter replacement</td>
<td>40,000 Km/800 hours (3)</td>
</tr>
<tr>
<td>EDC and AdBlue system check-up</td>
<td>40,000 Km/800 hours (3)</td>
</tr>
<tr>
<td>Fuel filter replacement</td>
<td>80,000 Km/1,600 hours (1) (2) (4)</td>
</tr>
<tr>
<td>Fuel pre-filter replacement</td>
<td>80,000 Km/1,600 hours (1) (2)</td>
</tr>
<tr>
<td>AdBlue system pre-filter and filter replacement</td>
<td>160,000 Km/3,200 hours</td>
</tr>
<tr>
<td>Auxiliary member drive belt</td>
<td>160,000 Km/3,200 hours</td>
</tr>
<tr>
<td>Air filter cleaning</td>
<td>Yearly</td>
</tr>
<tr>
<td>Check coolant density</td>
<td>Yearly</td>
</tr>
<tr>
<td>Air filter replacement and housing cleaning</td>
<td>2 years (5)</td>
</tr>
<tr>
<td>Coolant replacement</td>
<td>2 years</td>
</tr>
<tr>
<td>Power steering oil replacement</td>
<td>3 years (2)</td>
</tr>
</tbody>
</table>
1) Maximum period for using good quality fuel (EN 590 standard). It is reduced based on the dependency on fuel contamination and on the alarm signals for pre-filter/filter clogging and/or water in the filter. The filter clogging warning requires its replacement. If the water alarm is not disabled after draining, the filter needs to be replaced.

2) To be performed every year even if the operating hours expected are not met.

3) Frequency applicable to lubricants as provided in REFILLING table.

 The replacement interval is halved when using oils that do not meet the specifications, and using fuels with a sulphide percentage exceeding 0.5%.

4) Use only filters with the following features:
 - filtering degree < 12 µm
 - filtering efficiency β > 200.

5) Frequency is based on ambient and efficiency/wear conditions of the product.

6) The frequency for heavy-duty engines is reduced to 160,000 km or 3,200 hours.

WARNING!

The extraordinary maintenance operations described hereunder fall within the exclusive competence of manufacturer’s personnel or specialised personnel having proper working tools and adequate protection devices. The procedure and modality for carrying out these operations are illustrated in the FPT Technical and Repair Manual.

Extraordinary maintenance

<table>
<thead>
<tr>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine efficiency check-up</td>
</tr>
<tr>
<td>Valve/Tappets clearance adjustment</td>
</tr>
<tr>
<td>Catalytic converter replacement</td>
</tr>
</tbody>
</table>
HOW TO

WARNING!

It is advisable that operators must observe the prescriptions described in the section SPECIAL WARNINGS.

Engine lubricant level inspection

To avoid risk of burns, only proceed when the engine is not running and is cool. (see the illustrations in the section ENGINE TECHNICAL DATA).

- Make sure that the vehicle is levelled.
- Using the dip-stick (1), that the oil quantity is between MIN and MAX limits.
- If the level is insufficient, remove the cap located on the top of the cylinder head and refill the lubricant through the filler.

WARNINGS!

- After refilling make sure oil level does not exceed the limit "Max" on the stick.
- Insert the dip-stick all the way down and tighten the cap by turning it clockwise until it comes to a full stop.

Coolant level inspection

Proceed only with engine not running and at low temperature to avoid any risk of burns.

- With the engine at low temperature, make sure that the fluid level in the expansion tank is above the minimum level.
- Visually check that the fluid level is not more than 2/3 of the height of the tank in order to enable any increase in volume of the fluid caused by the temperature increase.
- Top up the tank from the filler cap (1) if necessary, using clean water. Do not use distilled water; see the table REFILLING.

NOTE: If the refill operations occur frequently a diagnosis of the cooling circuit is necessary.

In the event that only the heat exchanger without the expansion tank is available on the vehicle, refill it if necessary, paying attention that the fluid does not saturate the internal volume of the exchanger in order to enable any increase in volume of the fluid caused by the temperature increase.

CAUTION!

When the engine is warm, a pressure liable to cause hot liquid to be expelled with extreme violence is created within the cooling circuits. This results in a danger of burning.
Draining water from the fuel pre-filter

The high risk of refuelling with fuel that is polluted by foreign bodies and water makes it advisable to carry out this control every time you refuel.

Proceed with the engine not running.

- Place a container under the filter or pre-filter to collect the fluid.
- Unscrew the tap plug (1) in the bottom part of the filter; in some lay-outs the plug includes a sensor to detect the presence of water in the fuel.
- Drain off liquid until only fuel can be seen.
- Close the plug again, tightening it completely by hand.
- Dispose of the drained fluids according to current regulations.
- Fill up the pre-filter and bleed the residual air in the circuit as described in the section dealing with the pre-filter replacement.

Checking power steering oil
(Only engine with standard configuration)

- Extract the sensor from the storage tank only when the engine is not running.
- Check that the level is between the limits. Top up if necessary according to the table REFILLING.
- Start the engine and perform any steering operations.
- Close the plug again tightening it properly after verifying that the level is still between the limits.

Checking/topping up electrolyte level in batteries

Place the batteries on a level surface, then proceed as follows.

- Visually check that the fluid level is between the "Min" and "Max" limits; in the absence of references, check that the fluid covers the Lead plates inside the elements for about 5 mm.
- Top up with distilled water only those elements in which the level is below the minimum.
- On this occasion, make sure that the terminals and clamps are clean, properly tightened and protected by Vaseline.
Some types of battery have a single cover for all the inspection plugs. To access the elements, use a lever as shown in the figure.

WARNING!

If all the elements of the battery need refilling with a considerable quantity of distilled water, contact specialised technical personnel in order to perform a diagnostic check on the efficiency state of the recharge system and battery.

CAUTION!

- The batteries contain sulphuric acid, which is extremely caustic and corrosive; always wear protective gloves and goggles when topping them up. Whenever possible it is recommended that this control be carried out by specialised personnel.
- Do not smoke or use live flames near the batteries during the control, and make sure that the room you are working in is adequately ventilated.

Checking tension and state of the auxiliary member drive belt

Only proceed with the engine stopped and at a low temperature, so as to avoid the risk of burning.

- Remove any casing protecting the pulleys.
- Check that the belt is not torn or worn, and that there are no lubricants or fuel on it. If this is not the case, replace them.
- At the same time, make sure that the tensioning device is working properly, proceeding as shown in the figure.
- Replace the guard casing in its housing, and lock all the retaining elements.
Replacing the lubricant oil

Only proceed with the engine stopped and at a low temperature, so as to avoid the risk of burning. For the location of the drain plug and oil filler refer to the illustrations on pages 5 and 7.

- Place a container under the drainage plug to collect the used oil (see illustrations in the chapter ENGINE TECHNICAL DATA).
- Unscrew the plug and wait until the sump has emptied completely, then fasten the plug in place again.
- Fill up through the feeder hole (1) on the timing system cover or (2) as shown in the figure, using the types and amounts of oil indicated in the table REFILLING.
- Using the dip-stick (3), check that the oil level is between the "Min" and "Max" levels.
- Dispose of used oil according to current regulations.

WARNINGS!

- After refilling make sure that the oil level is not above the MAX limit on the dip-stick.
- Make sure that the dip-stick has been fully inserted and the filler cap tightened clockwise up to a complete stop.

Replacing the engine oil filter

Only proceed with the engine stopped and at a low temperature, so as to avoid the risk of burning. Only use filters with a filtration level equivalent to the ones you are replacing (see section FREQUENCY).

- Place a container under the filter support, to collect the used oil.
- Unscrew the filter and remove it (1).
- Carefully clean the surfaces of the support that are in contact with the seal (2).
- Moisten the new filter seal with a thin layer of oil.
- Hand screw the new filter into place until the seal gasket touches the support, then lock by a further 3/4 of a turn.
- Dispose of the old filter according to current regulations.
Replacing the blow-by filter (if present)
Only proceed with the engine stopped and at a low temperature, so as to avoid the risk of burning.
- Loosen the screws and remove the cover (1) of the filter housing.
- Remove the two filters and proceed to the replacement.
- Install the cover again.

EDC and AdBlue system check-up
The diagnostic inspection can be carried out by using the diagnostic tool supplied by the FPT Technical Service Network to the appropriate connector. The inspection could underline that the system is operating even if some problems are present. In this case make provision to carry out an exhaustive check-up.

Replacing the fuel filter
Only proceed with the engine stopped and at a low temperature, so as to avoid the risk of burning.
Only use filters with a filtration level equivalent to the ones you are replacing (see section FREQUENCY)
- Remove the filter (1) by unscrewing it.
- Check that the new filter has performance levels that meet the needs of the engine.
- Moisten the new filter seal with diesel or engine oil.
- Hand screw the new filter into place until the seal gasket touches the support, then lock by a further 3/4 of a turn.
- Pay particular attention to the electrical fuel pre-heater and relevant electrical connection.

NOTE: should it be necessary to accelerate the bleeding phase, the hand pump can be used during start-up.
Replacing the fuel pre-filter

Only proceed with the engine stopped.

- Remove the pre-filter by unscrewing it.
- Check that the new filter has performance levels meeting the needs of the engine (e.g. by comparing them with the old one).
- Moisten the new filter seal with diesel or engine oil.
- Hand screw the new filter into place until the seal gasket touches the support, then lock by a further 3/4 of a turn.
- Loosen the bleeder screw (2) on the pre-filter support and activate the hand pump (1) until the supply circuit is full. Ensure that any fuel coming out is not dispersed into the environment.
- Lock the bleeder screw tightly.
- Start the engine and run it at minimum speed for a few minutes to eliminate any residual air.

NOTE: should it be necessary to accelerate the bleeding phase, the hand pump can be used during start-up.

WARNING!

Do not fill up the new filter before it is fitted to the support, to avoid inserting harmful impurities into the injection system and circuit.

WARNING!

In the event that fuel pipings have to be disconnected, clean with the utmost care the fittings before connecting them again. Make sure that the seal is appropriate by starting the engine. If leakages occur take adequate countermeasures against this immediately.

CAUTION!

Never loosen the high pressure common rail injection circuit fitting in any way. Do not carry out unnecessary and dangerous bleeding attempt.

![Diagram](10_049_C.png)
Replacing the ADBLUE pre-filter
Proceed only with the engine which is not in motion.
Use only filters which respond to the technical requirements of use.
- Access the pre-filter in its housing (1), by removing the rapid clutch connection (2), by acting as illustrated in the figure.
- Remove the filtering element and replace it.
- Recover the continuity of the circuit and correctly block the rapid clutch connection.
- Dispose of the discarded element according to current regulations.

Replacing the auxiliary member drive belt
For replacing the auxiliary member drive belt, refer to the information given in the section concerning the check of the belt tension.

Cleaning or replacing the air filter
(For FPT component only)
Only proceed with the engine stopped.
- Remove the cover (1) of the filter housing and extract the cartridge paying attention that the dust does not get into the sleeve.
- Blow the filtering element by means of dry and compressed air, acting from the inside outwards (max. pressure: 200 kPa).
 Avoid using detergents; do not use diesel oil.
- Never hit the filtering element by means of tools, and check its condition before reinstalling it.
- In the event that breakages or tears take place, or it is not possible to remove the impurities, replace it.
- Check that the gasket base is in good condition.
- Reassemble the filtering element and close the housing.
Checking coolant density or replacing coolant

Only proceed with the engine stopped and at a low temperature, so as to avoid the risk of burning.

In the event that a mixture of PARAFLU 11 and water is used, the density value is equal to 1.0675 g/cm³ (at a temperature of 15°C). For replacing the coolant, observe the following procedure:

- Provide suitable containers to ensure that no coolant is dispersed into the environment.
- Remove the cap of the expansion tank.
- Loosen the seal elements, remove the sleeves connecting the engine circuit to the heat exchanger and wait until it has emptied completely. When empty, repair the circuit making sure that the sleeves are perfectly sealed.
- Fill up the circuit as indicated in the table REFILLING.
- Bleed the circuit and top-up if necessary.

Replacing power steering oil

Only proceed with the engine stopped.

- Open the cap of the storage tank and proceed depending on the necessity related to the vehicle building.

MOVING THE ENGINE

The operations necessary to disconnect and subsequently reconnect the engine must only be carried out by technicians from Service Centres.

When lifting the engine only, use the eyebolts indicated in this manual in the section ENGINE TECHNICAL DATA and marked on the engine with special stickers.

Lifting must be carried out using a rocker arm that keeps the metal cables supporting the engine parallel, using all the eyebolts provided simultaneously; the use of a single eyebolt only is not allowed.

The engine lifting system must have a capacity and size suited to the weight and dimensions of the engine; check that there is no interference between the lifting system and the engine components. Do not lift the engine before removing the transmission members that are coupled to it.
DISPOSAL OF WASTE
The engine is made up of parts and elements that, if discarded, may cause damage to the environment.
The materials listed below must be handed over to specialised Collection Centres; the laws in force in the various Countries foresee severe penalties for transgressors:

- Starter batteries.
- Used lubricants.
- Mixtures of water and antifreeze.
- Filters.
- Additional cleaning materials (e.g. greasy or fuel-soaked cloths).
LONG ENGINE INACTIVITY

PREPARING THE ENGINE FOR A LONG PERIOD OF INACTIVITY

In order to prevent oxidation of the internal parts of the engine and of certain components in the injection system, when the engine is expected to be inoperative for periods of more than two months, the following operations must be carried out in preparation for this:

1. Drain the lubricant from the sump, after first warming up the engine.

2. Fill the engine with protective oil type 30/M (or alternatively oil that complies with MIL 2160B type 2 specifications), up to the "minimum" level indicated on the dip-stick. Start the engine and keep it running for approximately 5 minutes.

3. Drain the fuel from the injection circuit, from the filter and from the injection pump pipes.

4. Connect the fuel circuit to a tank containing CFB (ISO 4113) protective fluid, and feed in the fluid by putting the circuit under pressure and running the engine for approximately 2 minutes, after first disabling the injection system. This operation can be performed by polarising terminal 50 of the starter motor with a positive voltage equivalent to the rated voltage of the system, using a conductor provided for that purpose.

5. Nebulise approximately 10 g per litre displacement of 30/M protective oil into the turbocharger suction inlet, during the pressurised filling operation described in the previous point.

6. Close all the suction, delivery, ventilation and bleeder openings in the engine with suitable plugs, or seal them with adhesive tape.

7. Drain the residual 30/M protective oil from the sump. This oil can be used again for a further 2 preparation operations.

8. Fit signs reading ENGINE WITHOUT OIL to the engine and to the on-board control panel.

8. Drain the coolant, if it has not been mixed with suitable antifreeze and corrosion inhibitors, and affix a sign to indicate the fact.

In the event of prolonged inactivity, the operations described must be repeated every 6 months, following the procedure given below:

A) drain the 30/M protective oil from the sump;
B) repeat the operations described from point 2 to point 7.

Should you intend to protect external parts of the engine, proceed by spraying OVER 19 AR protective liquid on unpainted metal parts, such as the flywheel, pulleys and the like, avoiding belts, connector cables and electrical equipment.
RESTARTING THE ENGINE AFTER A LONG PERIOD OF INACTIVITY

1. Drain the residual 30/M protective oil from the sump.
2. Fill the engine, as prescribed, with lubricant of the type and amount indicated in the table REFILLING.
3. Drain the CFB protective fluid from the fuel circuit, carrying out this operation as indicated under point 3. of PREPARING THE ENGINE FOR A LONG PERIOD OF INACTIVITY.
4. Remove the plugs and/or seals from the suction, delivery, ventilation and bleeder openings in the engine, restoring it to a normal state of use. Connect the turbocharger suction inlet to the air filter.
5. Connect the fuel circuits to the vehicle fuel tank, completing the operations as indicated in point 4. of PREPARING THE ENGINE FOR A LONG PERIOD OF INACTIVITY. During filling operations, connect the fuel return pipe to a collection tank, so as to prevent any residual CFB protective fluid from flowing into the machine fuel tank.
6. Check the engine and fill it up with coolant as prescribed, bleeding it if necessary.
7. Start the engine and keep it running until the idling speed rate has stabilised completely.
8. Check that the instruments on the on-board control panel/s are showing plausible values, and that no alarms are shown.
9. Stop the engine.
10. Remove the ENGINE WITHOUT OIL signs from the engine and from the on-board control panel.
ENGINE MALFUNCTIONS

The electronic unit overseeing management and control of all operation of the engine is capable of recognising any malfunctions that may occur, and of adopting strategies that will allow you to proceed in full safety. The event, signalled by light-up of the EDC MALFUNCTION indicator on the on-board control panels, results in programmed limitation of power within certain thresholds, set according to the severity of the case. In the case of temporary malfunctions the reduction in performance will remain in force until the engine is stopped.

EDC anomaly signalling modes
The different switch-on modes of the EDC indicator light show different anomaly states:

Off
Regular operation or temporary data absence compensated by the safety strategy.

On
An anomaly has been detected and a power limitation has occurred but it is possible to continue driving slowly. Contact the Technical Service Network and ask for instructions.

Blinking
A serious anomaly has been detected and the engine must be stopped. It is possible an emergency stop generated by the electronic unit. Reach a safety condition, stop the engine, and call out the Technical Service Network.

Operation at reduced performances, as a result of AdBlue run out
According to harmful emission containment laws, imposing the efficient operation of “antipollution” devices adopted for different engines, if the known additive AdBlue is not regularly topped up and it runs out, the electronic unit will manage the engine at reduced performances.

Accelerator electronic circuit malfunction
When certain problems are recognised, the Electronic Unit controlling the engine adopts a strategy that will enable running/work to continue in emergency mode. The possible operating modes of the strategy, known as “accelerated minimum speed running”, are as follows:

A. The accelerator does not “respond”: the running speed stabilises at a speed higher than the idle to allow the machine to proceed slowly and be manoeuvred simply by engaging the clutch on and off, without accelerating.

B. The accelerator “responds partially”: when the accelerator is moved to approximately half way, the speed gradually increases up to 2000 rpm; releasing the accelerator the speed rapidly decreases up to the idle.

Malfunction in the battery recharging system
The Electronic engine control units are programmed to increase the minimum running speed if the voltage in the electrical system reaches values considered to be at the limits of efficiency. In this case, check the efficiency of the battery/ies and if necessary perform a check-up on the system components.
CAUTION!

The engine electronic control unit can adopt safety strategies at any time during use of the machine or vehicle, should conditions arise that are considered to put the engine at risk. When conditions of this kind occur, proceed only if necessary and with the greatest possible care and attention.

CAUTION!

Do not leave vehicles or machines with the engine running without first putting the parking lock or brake on.
BEHAVIOUR IN AN EMERGENCY

The user of a vehicle that has been constructed according to safety regulations, when following the instructions provided in this manual and the indications given on the engine labels, will be working in safe conditions.

Should improper conduct result in accidents, always request the intervention of trained first aid specialists immediately. In an emergency and while awaiting the arrival of first aid specialists, follow the instructions given below.

Engine malfunctions

When operating with a malfunctioning engine, take the greatest possible care when manouevring and make sure that all those aboard are holding firmly to safe hand-holds (see section on ENGINE MALFUNCTIONS).

In case of fire

Extinguish the fire using the fire-fighting equipment foreseen, and in the manner indicated by Fire prevention authorities (fire-fighting equipment for certain machines and equipment is compulsory under current safety legislation).

Burns and scalds

1. Extinguish any flames on the burned person's clothing, by:
 • throwing water over them;
 • using a powder fire-extinguisher, without directing the jet at the person's face;
 • covering with blankets or rolling the victim on the ground.

2. Do not attempt to remove pieces of clothing that may have stuck to the skin;
3. In the case of scalding, immediately but carefully remove any clothing that may be soaked in the hot liquid;
4. Cover the burn with a special burn dressing or sterile bandage.

Carbon monoxide intoxication (CO)

Carbon monoxide from the engine exhaust is without smell, and is dangerous both because it causes intoxication, and because when combined with air it forms an explosive mixture.

In closed rooms, carbon monoxide is extremely dangerous, as it can reach critical concentrations within a very short time.

When assisting an intoxicated person in a closed room:
1. Ventilate the room immediately, to reduce the concentration of gas.
2. When entering the room, hold your breath, do not light flames, lights or ring electric doorbells or phones, to avoid the risk of explosion.
3. Carry the intoxicated person out into the fresh air or into a well ventilated room, resting him on one side if he is unconscious.
Electrocution
The engine’s electrical 12 V or 24 V electrical system does not involve the risk of electrocution, however, in the event of a short-circuit caused, for example, by a metal tool, there is a risk of burning due to overheating of the object through which the electrical current runs. In these circumstances:
1. Remove the object that caused the short-circuit, using means that provide sufficient heat insulation.
2. Switch off the power at the main switch, if there is one.

Injuries and fractures
The vast number of possible circumstances and the specific nature of operations required means that the intervention of a medical team is necessary.
1. In the event of bleeding, keep the edges of the wound pressed together until help arrives.
2. If there is any suspicion of a fracture, do not move the injured part and only move the patient if absolutely necessary.

Caustic burns
Caustic skin burns are caused by contact with extremely acid or alkaline substances. For electric maintenance technicians these are typically caused by acid from batteries; in these circumstances, proceed as follows:
1. Remove any clothing soaked in the caustic substance.
2. Wash the area with lots of running water, avoiding parts that have not been burned.

If either battery acid, lubricants or diesel come into contact with the eyes: wash the eyes with water for at least 20 minutes, keeping the eyelids open so that the water flows over the eyeball (move the eye in all directions to wash more thoroughly).
SAE 10W
SAE 20W
SAE 30
SAE 40
SAE 10W -30
SAE 10W -40
SAE 10W -60
SAE 15W -40 mineral base
SAE 15W -40 semisynthetic base
SAE 20W -60 semisynthetic base
SAE 5W -30 synthetic base
SAE 0W -30 synthetic base