section 3

8001 SERIES

WORKSHOP MANUAL

8061Si06
8061Si07
8061SRi26
8061SRi27
The data contained in this publication may not have been updated following modifications carried out by the manufacturer, at any time, for technical or commercial reasons and also to conform to the requirements of the law in the various countries.

This publication supplies features and data together with the suitable methods for repair operations to be carried out on each single components of the gensets and genset engines. Following the supplied instructions and using the inherent specific fixtures, a correct repair procedure will be obtained in due time, protecting the operators from all possible accidents. Before starting any repair, be sure that all accident prevention devices are available and efficient. Therefore check and wear what indicated by the safety provision protective glasses, helmet, gloves, safety shoes. Before use, check all work, lifting and transport equipment.
<table>
<thead>
<tr>
<th>Section</th>
<th>8061 Si 06</th>
<th>8061 Si 07</th>
<th>8061 SRI26</th>
<th>8061 SRI27</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DATA ON ASSEMBLY CLEARANCES</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>TIGHTENING TORQUES</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>TOOLS</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>FAULT DIAGNOSIS</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>DISMANTLING OF THE GENSET</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>ENGINE BENCH DISASSEMBLY</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>CYLINDER BLOCK</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>CAMSHAFT</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>BUSHES</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>TAPPETS</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>CRANKSHAFT</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>FLYWHEEL</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>CONNECTING ROD / PISTON ASSEMBLY</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>TIMING GEARS</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>CYLINDER HEAD</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>VALVES</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>VALVE GUIDES</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>PUSH RODS</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>LUBRICATION - OIL PUMP</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>COOLING - WATER PUMP</td>
<td>53</td>
<td>53</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>MOUNTING OF THE INJECTION PUMP AND TIMING</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>OVERHAUL OF THE ELECTRIC MACHINE</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>REASSEMBLING THE ENGINE</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>ASSEMBLING OF THE ALTERNATOR WITH THE ENGINE</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
</tbody>
</table>
TIMING

Valve Timing:
- Intake
 - opens: before T.D.C........................... 12°
 - closes: after B.D.C............................ 31°
- Exhaust
 - opens: before B.D.C........................... 50°
 - closes: after D.C............................. 16°

Clearance between valves and rockers for timing checks: 0.45 mm

Operating clearance between valves and rockers, cold engine:
- intake and exhaust............................. 0.30 mm

FUEL SYSTEM

In line injection pump type Bosch VE6

Fixed injection pump delivery start advance = 8° ± 0.5°

Fuel injectors setting.............................. 250 ± 3 bar

Firing order .. 1 - 5 - 3 - 6 - 2 - 4

LUBRICATION

Minimum oil pressure:
- at full throttle.................................. 2 kg/cm²
- when idling.. 0.7 kg/cm²

STARTING

By starter motor

ELECTRIC SYSTEM FOR:

- GENSET ENGINE 8061SI 06 A.550
- GENSET ENGINE 8061SI 06 A.580
- GENSET G.E. 8061SI 06 A.955
- GENSET ENGINE 8061SI 07 A.550
- GENSET ENGINE 8061SI 07 A.580
- GENSET G.E. 8061SI 07 A.955

- Voltage... 12 V
- Self-regulated alternator...................... 14 V, 45 A
- Starting motor power............................ 3 KW
- Battery (optional).............................. 1X180 Ah

ELECTRIC SYSTEM FOR:

- GENSET 8061SI 06 A.956
- GENSET 8061SI 07 A.956

- Voltage... 24 V
- Self-regulated alternator...................... 28 V, 30 A
- Starting motor power............................ 4 KW
- Battery (optional).............................. 2X120 Ah
TIMING

Valve Timing:
- Intake
 opens: before T.D.C..12°
 closes: after B.D.C...31°
- Exhaust
 opens: before B.D.C..50°
 closes: after D.C...16°

Clearance between valves and rockers for timing checks.................................0,45 mm
Operating clearance between valves and rockers,
cold engine:
 intake and exhaust..0,30 mm

FUEL SYSTEM

In line injection pump type Bosch VE6
Fixed injection pump delivery start advance...3° ± 0,5°
Fuel injectors setting..250 ± 3 bar
Firing order..1 - 5 - 3 - 6 - 2 - 4

LUBRICATION

Minimum oil pressure:
- at full throttle..2 kg/cm²
- when idling...0,7 kg/cm²

STARTING

By starter motor

** ELECTRIC SYSTEM FOR:

- GENSET ENGINE 8061SRI 26 A.550
- GENSET ENGINE 8061SRI 26 A.580
- GENSET G.E. 8061SRI 26 A.955
- GENSET ENGINE 8061SRI 27 A.550
- GENSET ENGINE 8061SRI 27 A.580
- GENSET G.E. 8061SRI 27 A.955

- Voltage..12 V
- Self-regulated alternator................................14 V, 45 A
- Starting motor power......................................3 KW
- Battery (optional)..1X180 Ah

** ELECTRIC SYSTEM FOR:

- GENSET 8061SRI 26 A.956
- GENSET 8061SRI 27 A.956

- Voltage..24 V
- Self-regulated alternator................................28 V, 30 A
- Starting motor power......................................4 KW
- Battery (optional)..2X120 Ah
DATA ON ASSEMBLY CLEARANCES

CYLINDER BLOCK AND CRANK MECHANISM COMPONENTS

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Dimension</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bores for cylinder liners Ø 1</td>
<td>106.85</td>
<td>106.90</td>
</tr>
<tr>
<td>Cylinder liners: out. diam Ø 2</td>
<td>106.94</td>
<td>106.97</td>
</tr>
<tr>
<td>Cylinder liners – crankcase bores</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>Outside diameter Ø 2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Cylinder liners ins. diam Ø 3</td>
<td>104.000</td>
<td>104.024</td>
</tr>
<tr>
<td>Piston measurement height</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Piston-cylinder liner</td>
<td>0.130</td>
<td>0.172</td>
</tr>
<tr>
<td>Piston diam Ø 1</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Piston protrusion</td>
<td>0.64</td>
<td>0.97</td>
</tr>
<tr>
<td>Gudgeon pin Ø 3</td>
<td>37.984</td>
<td>37.990</td>
</tr>
<tr>
<td>Gudgeon pin – pin housing</td>
<td>0.010</td>
<td>0.022</td>
</tr>
<tr>
<td>Piston ring grooves X 1</td>
<td>3.20</td>
<td>3.23</td>
</tr>
<tr>
<td>X 2</td>
<td>2.55</td>
<td>2.57</td>
</tr>
<tr>
<td>X 3</td>
<td>4.03</td>
<td>4.05</td>
</tr>
</tbody>
</table>

* measured on 101 mm diameter
<table>
<thead>
<tr>
<th>Description</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston rings * measured on 101 mm diameter</td>
<td>3,095 + 3,075</td>
</tr>
<tr>
<td>Piston ring – grooves</td>
<td>0,105 + 0,155</td>
</tr>
<tr>
<td>Piston ring end gap in cylinder liner: X1, X2, X3</td>
<td>0,30 + 0,55</td>
</tr>
<tr>
<td>Small end bush housing</td>
<td>41,846 + 41,884</td>
</tr>
<tr>
<td>Big end bearing housing</td>
<td>67,407 + 67,422</td>
</tr>
<tr>
<td>Small end bush diameter</td>
<td>41,979 + 42,017</td>
</tr>
<tr>
<td>Big end bearing shell (S=thickness) S</td>
<td>38,004 + 38,014</td>
</tr>
<tr>
<td>Small end bush – housing</td>
<td>1,805 + 1,815</td>
</tr>
<tr>
<td>Gudgeon pin – bush</td>
<td>0,095 + 0,171</td>
</tr>
<tr>
<td>Big end bearing shells</td>
<td>0,014 + 0,031</td>
</tr>
<tr>
<td>Measurement dimension X</td>
<td>0,254 – 0,508</td>
</tr>
<tr>
<td>Maximum out-of-parallel error on connecting rod axes</td>
<td>125</td>
</tr>
</tbody>
</table>

* mm = millimeters
<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main journals Ø 1</td>
<td>79,791 ± 79,810</td>
<td>mm</td>
</tr>
<tr>
<td>Crankpins Ø 2</td>
<td>63,725 ± 63,744</td>
<td>mm</td>
</tr>
<tr>
<td>Main bearing shells (S=thickness) S 1</td>
<td>2,169 ± 2,178</td>
<td>mm</td>
</tr>
<tr>
<td>Big end bearing shells (S=thickness) S 2</td>
<td>1,805 ± 1,815</td>
<td>mm</td>
</tr>
<tr>
<td>Main bearing housings Ø 3</td>
<td>84,200 ± 84,230</td>
<td>mm</td>
</tr>
<tr>
<td>Bearing shells – main journals</td>
<td>0,034 ± 0,101</td>
<td>mm</td>
</tr>
<tr>
<td>Bearing shells – crankpins</td>
<td>0,033 ± 0,087</td>
<td>mm</td>
</tr>
<tr>
<td>Main bearing shells Big end bearing shells</td>
<td>0,254 – 0,508</td>
<td>mm</td>
</tr>
<tr>
<td>Main journal, thrust bearing</td>
<td>32,0 ± 32,1</td>
<td>mm</td>
</tr>
<tr>
<td>Main bearing housing, thrust bearing X 2</td>
<td>25,010 ± 25,060</td>
<td>mm</td>
</tr>
<tr>
<td>Thrust washer halves X 3</td>
<td>3,378 ± 3,429</td>
<td>mm</td>
</tr>
<tr>
<td>Crankshaft end float</td>
<td>0,082 ± 0,334</td>
<td>mm</td>
</tr>
<tr>
<td>Thrust washer halves</td>
<td>0,254 – 0,508 – 0,762 – 1,016</td>
<td>mm</td>
</tr>
<tr>
<td>Alignment</td>
<td>≤ 0,10</td>
<td>mm</td>
</tr>
<tr>
<td>Ovality</td>
<td>± 0,25</td>
<td>mm</td>
</tr>
<tr>
<td>Taper</td>
<td>0,008</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>0,012</td>
<td>mm</td>
</tr>
</tbody>
</table>
CYLINDER HEAD. VALVE GEAR

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Description</th>
<th>Unit</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valve guide housings in the cylinder head</td>
<td>ø 1</td>
<td>13.950 + 13.983</td>
</tr>
<tr>
<td></td>
<td>Valve guide</td>
<td>ø 2</td>
<td>8.023 + 8.043</td>
</tr>
<tr>
<td></td>
<td>Valve guides and seatings in the head</td>
<td></td>
<td>0.010 + 0.066</td>
</tr>
<tr>
<td></td>
<td>Valve guides</td>
<td></td>
<td>+ 0.2</td>
</tr>
<tr>
<td></td>
<td>Valves:</td>
<td>ø 4</td>
<td>7.985 + 8.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α</td>
<td>60° 30' ± 7'</td>
</tr>
<tr>
<td></td>
<td>Valve stem and its guide</td>
<td>ø 4</td>
<td>7.985 + 8.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α</td>
<td>45° 30' ± 7'</td>
</tr>
<tr>
<td></td>
<td>Housing in head for valve seat</td>
<td>ø 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outside diameter of valve seat; angle of valve seat in cylinder head</td>
<td>ø 2</td>
<td>39.000 + 39.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α</td>
<td>60° ± 5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>α</td>
<td>39.136 + 39.161</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45° ± 5'</td>
</tr>
<tr>
<td></td>
<td>Recessing of valves</td>
<td>X</td>
<td>0.7 ± 1</td>
</tr>
<tr>
<td></td>
<td>Between valve seat and head</td>
<td></td>
<td>0.111 + 0.161</td>
</tr>
<tr>
<td>Component</td>
<td>Measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve spring height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free height</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under a load of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270 ± 14 N</td>
<td>H1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>528 ± 26 N</td>
<td>H2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injector protrusion</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7 ± 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camshaft bearing housing in crankcase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 1</td>
<td>55.280 ± 55.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 2</td>
<td>54.780 ± 54.805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 3</td>
<td>54.280 ± 54.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 4</td>
<td>53.780 ± 53.805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camshaft bearing journals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 5</td>
<td>51.470 ± 51.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 6</td>
<td>50.970 ± 51.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 7</td>
<td>50.470 ± 50.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø 8</td>
<td>49.970 ± 50.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outside diameter of camshaft bushes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>front</td>
<td>Ø 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>front intermediate</td>
<td>Ø 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rear</td>
<td>Ø 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rear intermediate</td>
<td>Ø 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>55.375 ± 55.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54.875 ± 54.930</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54.375 ± 54.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53.875 ± 53.930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside diameter of bushes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>front</td>
<td>Ø 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>front intermediate</td>
<td>Ø 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rear intermediate</td>
<td>Ø 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rear</td>
<td>Ø 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>51.580 ± 51.630</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51.080 ± 51.130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.580 ± 50.630</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50.080 ± 50.130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bushes and housings in crankcase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.07 ± 0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bushes and bearing journals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.08 ± 0.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effective cam lift

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>5.97</td>
</tr>
<tr>
<td>H</td>
<td>6.25</td>
</tr>
</tbody>
</table>

Tappet cup housing in crankcase

| Φ1 | 15.000 + 15.018 |

Outside diameter of tappet cup

Between tappets and housings

| | 0.030 + 0.068 |

Tappets

| | 0.1 – 0.2 – 0.3 |

Rocker shaft

| Φ1 | 17.982 + 18.000 |

Rockers

| Φ2 | 18.016 + 18.034 |

Between rockers and shaft

| | 0.016 + 0.052 |

"MOTOMETER" VALUES

<table>
<thead>
<tr>
<th>T.D.C. pressure</th>
<th>bar</th>
<th>≥ 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. permissible T.D.C. pressure</td>
<td>bar</td>
<td>≤ 19</td>
</tr>
<tr>
<td>Engine motoring over speed</td>
<td>rpm</td>
<td>= 260</td>
</tr>
</tbody>
</table>

(*) Starter-driven engine with oil temperature at 40°C - 50°C and injection pump at shut-off.
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder head cap screw stage 1: pre tightening</td>
<td>70 (7)</td>
</tr>
<tr>
<td>stage 2: pre tightening</td>
<td>70 (7)</td>
</tr>
<tr>
<td>stage 3: angle</td>
<td>180°C</td>
</tr>
<tr>
<td>Capscrew, main bearing cap stage 1: pre tightening</td>
<td>40 (4)</td>
</tr>
<tr>
<td>angle</td>
<td>60°C</td>
</tr>
<tr>
<td>Capscrew, connecting rod cap stage 1: pre tightening</td>
<td>80 (8)</td>
</tr>
<tr>
<td>angle</td>
<td>90°C</td>
</tr>
<tr>
<td>Flywheel fixing screw pre tightening angle</td>
<td>40 (4)</td>
</tr>
<tr>
<td>end tightening</td>
<td>60°C</td>
</tr>
<tr>
<td>Nut for injector fixing stud pre tightening end tightening</td>
<td>9.9 (1)</td>
</tr>
<tr>
<td></td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Oil sump fixing screw</td>
<td>16.5 (1.7)</td>
</tr>
<tr>
<td>Oil sump drain plug</td>
<td>95 (9.5)</td>
</tr>
<tr>
<td>Heater seat plug</td>
<td>125 (12.5)</td>
</tr>
<tr>
<td>Capscrew, rh and lh rear bracket</td>
<td>80 (8)</td>
</tr>
<tr>
<td>Capscrew, engine block rear cover</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Capscrew, rear cover</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Capscrew, timing cover and housing</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Nut for timing cover and housing stud</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Pipe union, piston cooling oil nozzle</td>
<td>45 (4.5)</td>
</tr>
<tr>
<td>Capscrew, intake manifold</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Capscrew, intake manifold and hook</td>
<td>50 (5)</td>
</tr>
<tr>
<td>Capscrew, exhaust manifold</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Nut, cylinder upper cover</td>
<td>13.5 (1.4)</td>
</tr>
<tr>
<td>Capscrew, rocker mounting</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Nut, rocker adjustment screw</td>
<td>13.5 (1.4)</td>
</tr>
<tr>
<td>Nut, flywheel hub</td>
<td>295 (29.5)</td>
</tr>
<tr>
<td>Capscrew, drive pulley</td>
<td>50 (5)</td>
</tr>
<tr>
<td>Capscrew, intermediate pin with flange</td>
<td>50 (5)</td>
</tr>
<tr>
<td>Capscrew, camshaft thrust place</td>
<td>32.5 (3.3)</td>
</tr>
<tr>
<td>Capscrew, gear mounting</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Capscrew, injection pump</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Capscrew, injection pump</td>
<td>50 (5)</td>
</tr>
<tr>
<td>Capscrew, turbocharger</td>
<td>50 (5)</td>
</tr>
<tr>
<td>Capscrew, gas exhaust pipe from turbocharger</td>
<td>16.5 (1.7)</td>
</tr>
<tr>
<td>Capscrew, oil pump to front cover</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Capscrew, retaining plate for oil pressure adjustment valve</td>
<td>22.5 (2.3)</td>
</tr>
<tr>
<td>Capscrew, heat exchanger</td>
<td>50 (5)</td>
</tr>
<tr>
<td>Capscrew, water pump</td>
<td>50 (5)</td>
</tr>
<tr>
<td>Capscrew, fan hub</td>
<td>115 (11.5)</td>
</tr>
<tr>
<td>Capscrew, belt tightener</td>
<td>50 (5)</td>
</tr>
</tbody>
</table>

△ Lubricate with oil
<table>
<thead>
<tr>
<th>TOOL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>99305049</td>
<td>Equipment for checking spring loading</td>
</tr>
<tr>
<td>99305121</td>
<td>Hot air unit</td>
</tr>
<tr>
<td>99322230</td>
<td>Swivelling telescopic stand</td>
</tr>
<tr>
<td>99340033</td>
<td>Damper flywheel extractor</td>
</tr>
<tr>
<td>99340205</td>
<td>Impact extractor</td>
</tr>
<tr>
<td>99341003</td>
<td>Single action bridge</td>
</tr>
<tr>
<td>99341016</td>
<td>Pair of brackets with holes</td>
</tr>
<tr>
<td>99342135</td>
<td>Pin for extracting injectors (to be used with 99340205)</td>
</tr>
<tr>
<td>99342145</td>
<td>Extractor for injector holder case</td>
</tr>
<tr>
<td>99348001</td>
<td>Extractor with locking device</td>
</tr>
<tr>
<td>99348004</td>
<td>Universal extractor, internal, 5 to 70 mm</td>
</tr>
<tr>
<td>99350108</td>
<td>Wrench for valve gear clearance adjustment screw</td>
</tr>
<tr>
<td>99360183</td>
<td>Tongs for fitting engine piston rings</td>
</tr>
<tr>
<td>99360288</td>
<td>Drift for removing valve guides</td>
</tr>
<tr>
<td>99360293</td>
<td>Drift for refitting valve guides (use with 9936028)</td>
</tr>
<tr>
<td>99360322</td>
<td>Tool for rotating engine flywheel</td>
</tr>
<tr>
<td>99360314</td>
<td>Tool for removing cartridge filters</td>
</tr>
<tr>
<td>99360352</td>
<td>Tool for locking engine flywheel</td>
</tr>
<tr>
<td>99360268</td>
<td>Tool for removing and refitting engine valves</td>
</tr>
<tr>
<td>99360365</td>
<td>Installing tool for fitting crankshaft rear seal (use with 99370005)</td>
</tr>
<tr>
<td>99360519</td>
<td>Box with set of tools for recutting valve sealings</td>
</tr>
<tr>
<td>99360467</td>
<td>Adapter for checking cylinder compression (to be used with 99395682)</td>
</tr>
<tr>
<td>99360500</td>
<td>Crankshaft lifting tool</td>
</tr>
<tr>
<td>99360508</td>
<td>Ring for lifting cylinder block</td>
</tr>
<tr>
<td>99360595</td>
<td>Hoisting beam for removing and refitting engine</td>
</tr>
<tr>
<td>99360605</td>
<td>Ring clamp for inserting standard and oversize pistons into the cylinders</td>
</tr>
<tr>
<td>99361033</td>
<td>Brackets for securing engine to swivelling stand 99322230</td>
</tr>
<tr>
<td>99360663</td>
<td>Tool for refitting injector holder cases</td>
</tr>
<tr>
<td>99370005</td>
<td>Handle for interchangeable drifts 99370006 Handle for interchangeable drifts</td>
</tr>
<tr>
<td>99370349</td>
<td>Installing tool for fitting crankshaft front seal (use with 99370006)</td>
</tr>
<tr>
<td>99390310</td>
<td>Reaming tool for valve guide</td>
</tr>
<tr>
<td>99390425</td>
<td>Tap for threading injector holder cases to be extracted</td>
</tr>
<tr>
<td>99394017</td>
<td>Reamer for reconditioning lower part of injector holder case (use with 99394019)</td>
</tr>
<tr>
<td>99394018</td>
<td>Cutter for reconditioning injector seating housing (use with 99394019)</td>
</tr>
<tr>
<td>99394019</td>
<td>Pilot bush</td>
</tr>
<tr>
<td>99395216</td>
<td>Pair of gauges for angle tightening with 1/2" and 3/4" square attachment</td>
</tr>
<tr>
<td>99395363</td>
<td>Tee square assembly for checking connecting rod distortion</td>
</tr>
<tr>
<td>99395682</td>
<td>Diesel engine cylinder compression tester</td>
</tr>
<tr>
<td>99395687</td>
<td>Bore micrometer (50 – 175 mm)</td>
</tr>
<tr>
<td>99395850</td>
<td>Torque wrench for checking belt tension</td>
</tr>
</tbody>
</table>
Main engine operating faults:

1 - Engine will not start
2 - Engine overheats
3 - Engine lacks power
4 - Engine emits black or dark grey smoke
5 - Engine emits grey (whitish) smoke
6 - Engine emits blue smoke
7 - Abnormal knocking from the engine
8 - Engine stops
9 - Engine exceeds maximum rpm
10 - Oil pressure too high or too low
11 - Excessive fuel consumption

I. ENGINE WILL NOT START

Battery terminal connections serviceable

- NO → Clean, check, tighten clamp nuts or replace

- YES →

Starter heater serviceable

- NO → Replace

- YES →

Starter heater serviceable (if fitted)

- NO → Replace

- YES →

Injection pump timing correct

- NO → Check correct timing as described in the relevant chapter

- YES →

Fuel pump operating correctly

- NO → Check and replace if necessary
Injectors serviceable

- YES

No air leaks in fuel circuit or injection pump

- NO

Check and bleed

- YES

No water in fuel circuit or pump

- NO

Check and clean fuel circuit, including tank

- YES

Compression ratio as specified

- NO

Overhaul the engine or limit repairs to the parts concerned (valves, piston rings etc.)

- YES

Fuel filters serviceable

- NO

Replace

- YES

Automatic advance regulator and electric STOP valve serviceable

- NO

Check and replace the parts concerned
2 ENGINE OVERHEATS

Coolant level correct
 NO → Check for leaks and top up

 YES →

Water pump and belts serviceable
 NO → Check, adjust tension and replace parts if necessary

 YES →

Water pump serviceable
 NO → Overhaul or replace the unit

 YES →

Thermostat serviceable
 NO → Replace

 YES →

Air filter and circuit ducts serviceable
 NO → Clean or replace defective parts

 YES →

Engine brake disengages
 NO → Check and replace if necessary
Injection pump timing correct

- NO ➔ Check correct timing as described in the relevant section

- YES ➔ Cylinder head gasket serviceable

- NO ➔ Replace

3 ENGINE LACKS POWER

Fuel filters serviceable

- NO ➔ Replace, proceeding as described in the “Use and maintenance” booklet

- YES ➔ Fuel circuit serviceable

- NO ➔ Check and if necessary repair as required

- YES ➔ Thermostat serviceable

- NO ➔ Replace

- YES ➔ Feed pump serviceable

- NO ➔ Replace

- YES ➔
Injectors serviceable

- NO ➔ Check operating and adjust as described.

 YES ➔

Injection pump timing correct

- NO ➔ Check correct timing as described in the relevant section

 YES ➔

Injection pump adjusted as specified

- NO ➔ Check and adjust the injection pump on the bench

 YES ➔

Compression ratio as specified

- NO ➔ Check using Motometer tool 99395682 and carry out necessary repairs

 YES ➔

Turbocharger serviceable

- NO ➔ Repair or replace the unit

 YES ➔

LDA circuit and device serviceable

- NO ➔ Check
4 | ENGINE EMITS BLACK OR DARK GREY SMOKE

Air filter serviceable
- NO → Replace

 YES →

Starts heater serviceable (if fitted)
- NO → Replace

 YES →

Automatic boost device cutting in
- NO → Check and replace if necessary

 YES →

Injectors serviceable
- NO → Check operation and adjust as described

 YES →

Injection pump timing correct
- NO → Check correct timing as described in the relevant section

 YES →

L.D.A. device serviceable
- NO → Adjust the L.D.A. device using tool 99309002

 YES →

Injection pump adjusted as specified
- NO → Check injection pump and adjust on bench
Compression ratio as specified

YES

Good quality diesel fuel

NO

Check using Motometer tool 99395682 and repair as necessary

NO

Clean the tank and replace the diesel filters

5 ENGINE EMITS GREY (WHITISH) SMOKE

Thermostat operating correctly

NO

Replace

YES

Injectors serviceable

NO

Check operation and adjust as described.

YES

Injection pump timing correct

NO

Check correct timing as described in the relevant section

YES

Coolant level correct

NO

Coolant probably entering combustion chamber; replace cylinder head gasket or overhaul the engine

YES

Clean the tank and replace the diesel filters

NO

Good quality diesel fuel
6 ENGINE EMITS BLUE SMOKE

Excessive oil consumption
- YES Check oil breather, cylinder compression. If necessary, overhaul the cylinder head or engine

7 ABNORMAL KNOCKING FROM THE ENGINE

Knocking coming from crankshaft
- YES Check main journals for clearance and ovality, tightness of main bearing cap bolts and flywheel bolts, oil pressure. Replace parts or overhaul the engine.

 NO

Knocking coming from connecting rods
- YES Check crankpins for clearance and ovality, tightness of connecting rod cap bolts, connecting rods for distortion. Replace parts or overhaul the engine.

 NO

Knocking coming from pistons
- YES Check clearance between pistons and cylinder liners, piston rings for breaks, gudgeon pin to piston boss clearances. Replace parts or overhaul the engine.

 NO

Knocking coming from cylinder head
- YES Check operating clearance between rocker arms and valves, injection pump timing, valve timing. Adjust.

 NO

Knocking coming from timing gears
- YES Check gears and replace if necessary
Knocking coming from injectors → YES → Check and adjust as described.

8 ENGINE STOPS

Fuel in tank → NO → Replenish and bleed if necessary.

Fuel filters serviceable → YES

Fuel filters serviceable → NO → Replace

Engine brake engaging → NO → Check and replace if necessary

Fuel circuit serviceable → NO → Check circuit and bleed

Idling speed correct → NO → Adjust
8001

Injector pump delivery correct

- **YES**
 - **Injector pump controls serviceable**

- **NO**
 - **Check delivery on bench**

9 ENGINE EXCEEDS MAXIMUM RPM

- **Speed governor operating correctly**

- **NO**
 - **Check and replace worn parts if necessary**

10 OIL PRESSURE TOO LOW OR TOO HIGH

- **Pressure relief valve operating**

- **NO**
 - **Check and replace if necessary**

 - **YES**
 - **Oil pump and delivery pipes serviceable**

 - **NO**
 - **Check and replace if necessary**

 - **YES**
 - **Main and big end bearings serviceable**

 - **NO**
 - **Replace bearings and if necessary recondition crankshaft**

 - **NO**
 - **Replace bearings and if necessary recondition crankshaft**
Engine oil viscosity correct

NO ➔ Replace engine oil with one of suitable viscosity

EXCESSIVE FUEL CONSUMPTION

Fuel tank and pipes serviceable

NO ➔ Eliminate any leaks and replace parts showing deterioration

YES ➔

Air filter serviceable

NO ➔ Replace

YES ➔

Injector adjustment correct

NO ➔ Check operation and adjust as described.

YES ➔

Injector pump adjustment correct

NO ➔ Check and adjust on test bench

YES ➔

L.D.A. device serviceable

NO ➔ Adjust the L.D.A. device using tool 99309002

YES ➔

Injection pump timing correct

NO ➔ Check static setting of injection pump
DISMANTLING OF THE GENSET

Remove all the external components of the genset:

- Radiator
- Guards
- Air cleaner
- Electric machine
- Pipes for air/water
- Electric wiring
- Injection pump
- Flywheel housing
- Heat exchangers
- Oil/fuel filters
- Intake and exhaust manifolds
- Fan
- Turbocharger

In order to fit the engine to the swivelling stand and to perform the overhaul.

ENGINE BENCH DISASSEMBLY

Take off the fan mounting (1), remove the crankshaft pulley (2) and the damper flywheel (3), and the water pump drive pulley (5).

Remove the alternator (1) and its bracket, remove the pipe (2) running from the water pump to the radiator. Detach the compressor lubricating oil delivery and return pipes (3, 4). Remove the thermostat (6).

Remove the water pump (3). Straighten the locking plate (1) on the hub and unscrew the nut (2).
Remove the hub (1) for the damper flywheel using tool 99340033 (3).

Remove the rocker cover (1).

Remove the injectors (1) and the rocker shaft assembly.

Recover the pushrods (1) and the caps (2) from the valve stems.
Unscrew the bolts (3) securing the cylinder head (4) and remove the head, recovering the gasket.

Rotate the engine 180°, remove the sump (3).

Remove the oil suction (1) and delivery (2) pipes and the timing gear cover (3).
Using round nosed pliers (2), remove the circlip (3) and withdraw the idler gear (4). Remove the oil pump (1). Remove the power steering pump drive shaft support (6). Remove the injection pump drive gear (5).

Remove the rear cover (1) complete with seal.

Remove the big end caps, recover the bearing shells and then withdraw the piston–connecting rod assemblies (1) from the top of the crankcase.

Unscrew the bolts (1) for the main bearing caps (2) and remove the caps.

Unscrew the flywheel attachment bolts (1), remove the tool 99360352 (2) and remove the flywheel.
Lift and dismount the crankshaft (2) by means of tool 99360500 (1): keep the main bearing shells and the shoulder semi-rings of the crankcase.

Loosen the locking screws (1) of the collar plate and pull out the camshaft. Pull the valve lifters out of their seats and dismount the oil spring nozzles. Remove the bracket (3) of the transmission gear wheel and the control housing (2).

Clean carefully all dismounted parts and check their integrity after dismounting of the engine. On the following pages instructions for the main checks and measurements are given which have to be carried out to determine whether the parts can be used again for mounting.

REPAIRS

CYLINDER BLOCK

CONTROLS AND MEASUREMENT

Because of its ductility the cylinder liner must never be measured inside when dismounted; the inner diameter must be measured at completely mounted liner.

In order to determine the value of the out-of-round, of the conical form and of the wear the inner diameter of the liners is checked by means of gauge 99395687 (2) provided with centi indicating caliper (1) that has been previously calibrated at a ring gauge (3) with a diameter of 104 mm.

If a ring gauge with a diameter of 104 mm is not available, use a slide gauge.
PLANN FOR CHECKING CYLINDER LINER DIAMETER

The measurements must be carried out for each individual cylinder at three different levels in the liner and in two planes at right angles to each other, one parallel to the lengthwise axis (A) and the other at right angles to it (B). Maximum wear is generally found in this plane (B) and in line with the first measurement. If ovality or taper or wear of any kind is found, it may be eliminated at overhaul by grinding the liners if the wear or scoring is light, or by reboring and then grinding if there is deep scoring or marked ovality.

Where reconditioning is carried out, all liners must be finished to the same oversize (0.4 – 0.8 mm).

PLAN OF CHAMFER TO BE APPLIED TO CYLINDER LINERS AFTER RECONDITIONING

1. Crankcase 2. Cylinder liner

REPLACING CYLINDER LINERS

Removal and installation of the cylinder block liners is carried out using a hydraulic press and the appropriate adaptor plate.

To install the cylinder liners in the cylinder block by using a press, the following steps have to be carried out:

- Measure to ensure cylinder liner outer diameter is 106.970 – 106.940 mm and the cylinder block bore diameter is 106.850 – 106.900 mm;
- Insert cylinder liner into the cylinder block and test, after pressing – in 70 – 90 mm the load must be not less than 5000 N and not more than 23,000 N;
- Continue pressing in and test, 30 mm before finishing, the load must be between 10,000 and 40,000 N;
- When pressing in is completed, wait 5” with a load of 50,000 or more to ensure liner is fully home; Strike blow with a hammer to ensure the liner is flush with the cylinder block;

If the fitting load is not within the specific figures, extract the liner and install a new one in its place.

After they have been fitted, cylinder liners must be reamed and ground.

(NOTE: 10,000 N = 1 Tonne)

Cylinder liners are supplied with an inner diameter slightly below nominal diameter to allow for any deformation which occurs during fitting to be corrected.

Replacement cylinder liners are also supplied with the outside diameter 0.2 mm oversize.
Check the condition of the machining plugs (1) in the cylinder block; if they are rusted or there is the least suspicion of leakage, replace them.

Using the tool (1), remove the locating dowel (2) from the mating surface (3) of the cylinder.

Extract the locating dowel only if the mating surface requires skimming.

Check that the cylinder head mating surface (3) are flat using a calibrate rule (2) and a feeler gauge (1). Grind any rough spots removing as little material as possible after removing the locating dowels. After grinding the cylinder head surface, restore the protrusion of the cylinder liner border support base to 0.64 – 0.97 mm.
The surfaces of the shaft bearing journals and those of the cams must be absolutely smooth; if they show traces of seizing and scoring, the shaft and associated bushes must be replaced.

Arrange the camshaft (4) between the centres (1) and using the hundredths dial gauge (2) check the lift of the cams (3) which should be:
- 5.97 mm for the inlet cam
- 6.25 mm for the exhaust cam

Still with the camshaft (4) arranged between centres (1), check the alignment of the support journals (3) using the hundredths dial gauge; this must not be more than 0.020 mm. If a larger misalignment is found, replace the shaft.

To check the assembly clearance, measure the inside diameters of the bushes (fig. 57) and the diameter of the journals (1, fig. 54) of the camshaft; the difference will give you the actual clearance. If clearances of more than 0.160 mm are found, replace the bushes and the shaft too, if necessary.

Check that the teeth of the camshaft gear (1) are not excessively damaged or worn; if they are, replace it. When fitting the new gear, it should be heated in an oven for 10' at a temperature of 180° and then shrunk onto the shaft, having first fitted the plate (3) and key (2) to the shaft.
BUSHES

The surfaces of the bushes must not show any signs of seizing or scoring; if they do, replace them.

MAIN DATA FOR CAMSHAFT BUSHES AND THEIR HOUSINGS IN THE CRANKCASE

- Dimension to be obtained after the bushes have been installed

REPLACING THE BUSHES

FIGURE 57

Before replacing the bushes (1), measure the bush diameters using a bore micrometer (2).
To remove and refit the camshaft bushes, use a suitable drift.

When fitting the bushes (1), make sure that the holes (2) are lined up with the oil feed holes in the crankcase.
After fitting, ream the camshaft bushes using the arbor (1) fitted with the pilot bushes (2) and cutter (3) so that the specified values are obtained.

TAPPETS

Replacement tappets are supplied in standard size and 0.10, 0.20 and 0.30 mm oversizes.

REPLACING TAPPETS

Replacing the tappets because of excessive play in the housings involves fitting oversize tappets and reaming out the seatings using an appropriate reamer (1).

MAIN DATA FOR TAPPETS AND THEIR HOUSINGS IN THE CRANKCASE

Fitting tappets, camshaft

Secure the timing gear casing (2) to the crankcase, first fitting the gasket, and tighten the screws to a torque of 25 Nm using a torque wrench. Lubricate the tappets (1) and fit into their housings in the crankcase.

Lubricate the camshaft bearings and insert the shaft (1) into the crankcase.
Through the holes (1) in the camshaft gear, tighten the screws (2) securing the camshaft retainer plate to the crankcase. Fit the idler gear pin (3), the injection pump gear (4).

CRANKSHAFT

MAIN DATA FOR THE CRANKSHAFT MAIN BEARING JOURNALS AND CRANKPINS
MEASURING THE MAIN BEARINGS JOURNALS AND CRANKPINS

Before regrinding the journals, measure the main journals (2) with a micrometer (1) and establish on the basis of the scale of bearing undersizes (7) the diameter to which the journals must be reground.

The classes of undersize are:
0.254, 0.508 mm

MEASURING THE MAIN BEARING JOURNALS

Main bearing journals and crankpins are always all re-ground to the same undersize class so as not to impair crankshaft balance.

MEASURING THE CRANKPINS

During the grinding operation, take great care to comply with the values for the main journal and crankpin blend radii given in the following figures.

Regrinding carried out on main journals or crankpins must be indicated by appropriate markings stamped on the side of crank web no. 1.
For undersize crankpins: the letter M
For undersize main journals: the letter B
For undersize crankpins and main journals: the letters MB.

HEAVY ROLLED FINISH

DETAIL OF MAIN JOURNAL BLEND RADII

R.3

DETAIL OF CRANKPIN BLEND RADII

R.3

DETAIL OF THRUST BEARING MAIN JOURNAL BLEND RADII

R.3
REMOVING/FITTING OILWAY PLUGS

Check that the lubrication circuit plugs (2) do not show any leaks at an internal pressure of 15 bars; if they do, replace using a suitable drift (1).

CHECKING MAIN JOURNAL ALIGNMENT

This check must be carried out after regrinding, if any, of the crankshaft journals by positioning the crankshaft between centres (2) and using a hundredths dial gauge (1) for the check.

Main journal alignment: maximum tolerance

> 0.10 mm (total reading on the dial gauge).

Alignment of the crankpins with the main journals: the centreline of each pair of crankpins and the centreline of the main journals must be in the same plane; the maximum tolerance permitted at right angles to this plane is ± 0.25 mm.

For the distance between the axis of rotation of the shaft and the outer surface of the crankpins, the maximum tolerance permitted is ± 0.10 mm.

REPLACING CAMSHAFT AND OIL PUMP DRIVE GEARS

Check that the teeth of the gears (1, 2) are not damaged or worn; if they are, remove them using a suitable extractor (3). When fitting new gears (1, 2), they must be heated in an oven for 10° to a temperature of 180° and shrunk on to the crankshaft, having first fitted the key.
MOUNTING MAIN BEARING

Replacement main bearings are supplied in inside diameter undersizes.

Do not carry out fitting operations on the bearings.

Position the bearing shells (1) in the main bearing housings in the crankcase.

Lift the crankshaft (2) using tool 99360500 (1) and carefully place it on the bearing shells in the housings.

MEASURING MAIN BEARING ASSEMBLY CLEARANCES

The clearance between the crankshaft journals and the relevant bearings is checked by the plastigage method, proceeding as follows:

- thoroughly clean the parts and remove all traces of oil
- arrange a strip of plastigage (6) on the main journals (4), parallel with the lengthwise axis
- fit the caps (1) together with the bearing shell to the relevant housings
- fit the cap securing bolts and tighten them to the prescribed torque using a torque wrench; the bolts must be lubricated with oil beforehand
- remove the caps from the housings and determine the clearance between the bearing shells and the crankshaft main journals by comparing the width of the plastigage at the point of greatest flattening with the scale divisions given on the package (3) containing the plastigage

Checking crankshaft end float

The normal assembly clearance is 0.082 – 0.334 mm. If a larger end float is found, replace the thrust washer halves with new ones of standard thickness or if necessary an oversize of 0.127, 0.254, 0.508 mm.
Position the thrust washer halves (1) on the 6th housing with the surface covered with anti-friction alloy towards the facing on the crankshaft.

Further tighten the screws by 90°, using tool 99395216 (1).

Fit the main bearing caps with bearing shells; before fitting the cap (1), position the halves of the thrust washer (2) with the surface covered with anti-friction alloy towards the facing on the crankshaft.

Fit the dial gauge (1) with magnetic base and check end float.

Using a torque wrench (1), tighten the securing bolts (2) to a torque of 80 Nm.
CRANKSHAFT REAR COVER

The oil seal (2) is fitted to the cover (1) using the appropriate installing tool (3).

FLYWHEEL

Check the surface on which the clutch plate bears; if it is scored, skimming will be required.

REPLACING THE FLYWHEEL RING GEAR

If the teeth of the gear fitted to the flywheel are badly damaged, replace the ring gear. Before fitting, the gear must be heated to a temperature of 80°C.

Fitting the flywheel

The bolts may be re-used provided that the Ø of the thread is not less than 11.5 mm.

Fit the flywheel (1), fit tool 99360352 (2) and, using a torque wrench, tighten the bolts (3) previously coated with LOCTITE HVX 576 to a torque of 40 Nm.

CONNECTING ROD/PISTON ASSEMBLY

Fit tool 99395216 (1) and further tighten the screws (2) by 60°. Remove the flywheel locking tool (3).

COMPONENT PARTS OF THE CONNECTING ROD/PISTON ASSEMBLY

Remove the piston rings (1) from the piston (2) using tongs 99360183 (3).

The gudgeon pin (1) retaining clips (2) are removed using a scriber (3) as shown in the figure.

PISTON
Replacement pistons are supplied in standard size or 0.4, 0.8 mm oversizes.

Measuring the piston diameter

The diameter of the piston (1) is measured using a micrometer (2) to determine the assembly clearance.

The clearance between the piston and cylinder liner can also be measured using a feeler gauge (1).

GUDGEON PIN
The pins are fitted with clearance both in the small end and in the piston.

The diameter of the pin (1) is measured using a micrometer (2).
Conditions for a correct gudgeon pin to piston fit

When fitting new pins, check the correct fit with the housing in the piston by carrying out the following checks:

- Lubricate the pin and its housing in the piston bosses with engine oil.
- Holding the pin in a vertical position, insert it into the bosses in the piston.
- It should be possible to insert the pin simply by pressing on it.
- The pin should not drop out of the bosses by itself.

PISTON RINGS

Replacement piston rings are supplied in standard size and 0.4, 0.8 mm oversize.

Check the thickness of the piston ring (2) using a micrometer (1).

MAIN DATA FOR THE PISTON, PISTON RINGS AND GUDGEON PIN

* The dimension is measured on a Ø 101 mm.
Check the clearance between the piston rings (3) and the grooves on the piston (2) using a feeler gauge (1).

The clearance between the ends of the piston rings (1) inserted into the cylinder liner (3) is measured using a feeler gauge (2).

If the gap between the ends is found to be less or more than the specified value, replace the piston rings.

The compression ring (2) in the first slot is wedge shaped. The clearance between the compression ring and the groove is measured by positioning the piston (1) with the relevant ring in the cylinder liner (3) in such a way that the compression ring half projects from the cylinder liner.

CONNECTING RODS

MAIN DATA FOR THE CONNECTING ROD, BUSH, GUDGEON PIN AND BEARING SHELLS

* Dimension to be obtained after installing the bush.
Checking connecting rods for distortion

Check that the connecting rod axes are parallel. The tolerance permitted is 0.07 mm measured at 125 mm from the lengthwise axis of the rod.

Each connecting rod is marked on the body and cap with a number corresponding to that of the cylinder to which it is fitted. In case of replacement, it is therefore necessary to number the new connecting rod with the same number as the one replaced.

BUSHES

The bush (2) is removed and refitted using the appropriate drift (1).

After installing the bush in the connecting rod small end, remove the part which protrudes at the side and then ream the bush to the specified diameter.

Reaming the small end bush using reaming machine 99301044.

ASSEMBLING THE CONNECTING ROD/PISTON ASSEMBLY

Assembling connecting rod to piston

1. The piston (2) must be fitted so that the words TAP-PET SIDE (1) on the crown are on the opposite side to the number (4) engraved on the connecting rod. Insert the gudgeon pin (3) and fit the retainer snap rings.

Checking connecting rod/piston for distortion

Check the connecting rod–piston assembly for distortion using fixture 993955363 (1) and a feeler gauge (2). The plane of the piston crown must be exactly at right angles to the plane of the fixture 993955363.
Fitting piston rings

The piston rings (1) are fitted to the pistons (2) using tongs 99360183 (3). The rings must be fitted with the word TOP facing upwards, and also the ring gaps must be located so that they are 120° apart from each other.

Fit the bearing shells (1) to the connecting rod and to the cap.

Do not carry out any fitting operations on the bearing shells.

The connecting rod bolts may be reused provided that the Ø of the thread measured between 19 and 35 mm from the beginning of the screw is not less than 10.5 mm.

PLAN FOR ASSEMBLING THE CONNECTING ROD TO THE PISTON FOR FITTING THE ASSEMBLY INTO THE CYLINDER

1. Piston 2. Combustion chamber 3. Area stamped with the number of the cylinder to which the connecting rod belongs 4. Camshaft

The arrow indicates the direction of rotation of the engine viewed from the camshaft drive end.

The connecting rod/piston assembly (1) is fitted into the cylinder liner using ring clamp 99360605 (2).

Lubricate the parts concerned before fitting.

When fitting the connecting rod/piston assemblies into the liners, check that:
- the connecting rod number corresponds to the number of its cylinder
- the words TAPPET SIDE stamped on the crown are facing the camshaft
- the numbers on the connecting rods are facing away from the camshaft side
- the piston ring gaps are staggered 120° from each other.
MEASURING CRANKPIN ASSEMBLY CLEARANCE

To measure the clearance, carry out the following operations:

- Thoroughly clean the parts and remove all traces of oil
- Position a strip of plastigage (2) on the crankshaft journals
- (1)
- Fit the connecting rod cap (3) and tighten the bolts to the prescribed torque; the bolts must be lubricated
- Remove the cap (3) and determine the clearance by comparing the width of the plastigage (2) at the point of greatest flattening with the scale divisions given on the package (3) containing the plastigage.

Lubricate the parts concerned before final assembly. Before re-using the connecting rod cap securing bolts, check that the diameter of the thread measured at 19 – 35 mm from the beginning of the screw is not less than 10.5 mm; if it is, replace the bolt.

Fitting connecting rod caps

Fit the connecting rod caps (2) and, using a torque wrench (1), tighten the bolts (3) to a torque of 40 Nm; the bolts must be lubricated beforehand.

Fit tool 99395216 (1) to the dial wrench and tighten the bolts (2) further by 60°.
Check that the connecting rods can be moved axially on the crankpins.

When fitting is complete, check the position of the pistons (4) at 1.00 C with respect to the cylinder block face using a dial gauge (2) with magnetic base (3).
The top lands of the pistons must project 0.64 – 0.97 mm above the face of the cylinder block (1).

TIMING GEARS

CHECKING AND REPLACING THE IDLER GEAR

Check the idler gear for damage and excessive tooth wear; replacing it if necessary.
REPLACING THE IDLER GEAR BUSH

Check the contact surfaces of the bush (1) for scoring or signs of seizing; if these are found, replace the bush using a suitable drift.

After fitting the bush (1), it must be reamed to the diameter shown in the figure (*).

The timing check is carried out as follows:
- provisionally set the play between the valves and rockers at 0.30 mm and check with a graduated sector that the advance and retard angles for intake and exhaust correspond to those indicated in the page 1 for engine 8061Si...; and page 2 for engine 8061SRI....

Install the idler gear (2), locating it so that the numbers 1, 2 and 3 marked on it line up with the same numbers engraved on the crankshaft gear (1), the camshaft gear (3) and the injection pump gear (4).
CYLINDER HEAD

Hydraulic leak test

Before dismantling the cylinder head, carry out the hydraulic leak test using the appropriate equipment (1, 3). By means of the coupling (3), pump in water heated to approx. 90°, to a pressure of 4–5 bars. Under these conditions, no leaks should be found, and if they are, the cylinder head (2) should be re-placed.

DISMANTLING THE VALVES

Rest the cylinder head on the workbench and, using tool 99360357 (1), apply pressure to the upper spring cup (6, fig. 121) so that the valve collets (4) can be extracted and the valve released; take off the upper cup (6), the spring (3) and the lower cup (5). Repeat the operation on all the valves. Turn the cylinder head upside down and withdraw the valves.

FIGURE 121

COMPONENT PARTS OF THE VALVE ASSEMBLY
5. Lower cups 6. Upper cups

Checking the mating surface of the head with the cylinder block

The mating surface of the head with the cylinder block is checked using a straight edge and a feeler gauge. If values of more than 0.15 mm are found over the whole length of the surface, true up the head on a suitable surface grinder, removing as little material as possible.

After this operation, the recessing of the valves and protrusion of the injectors should be checked.
VALVES
Removal of deposits and inspection of valves

Remove carbon deposits from the valves using a suitable wire brush.
Check the valves for signs of seizing or cracking and also, using a micrometer, check that the diameter of the valve stem is within the specified limits (see fig. 124). If not, replace the valves.

Refacing the valves
If necessary, reface the seatings on the valves using grinding machine 99301014, setting an angle of 45° 30' 7" for exhaust valves and 60° 30' 7" for inlet valves, removing as little material as possible.

Checking the play between a valve stem and its valve guide

Using a dial gauge (2) with magnetic base (1), check the play between the valve stem (3) and its guide. If excessive play is found, replace the valve and, if necessary, the valve guide.

FIGURE 124

MAIN DATA FOR VALVES AND VALVE GUIDES

* Dimension to be obtained after installing the valve guides.

VALVE GUIDES

The valve guides are removed and fitted using drifts 99360238 and 99360293.

Replacement valve guides are also supplied with the outside diameter 0.2 mm oversize.
Reaming the internal surfaces of valve guides

After installing the valve guides, ream the hole in the valve guide (2) using reaming tool 99390310 (1).

Recutting the valve seats

Using the Hunger tool 99360419 (1), recut the valve seats in the cylinder head so as to obtain perfect sealing.

The valve seats in the cylinder head are recut whenever the valves or valve guides are reconditioned or replaced.

Main data on the inlet and exhaust valve seatings

When assembling after the recutting operations, check that the recessing of the inlet and exhaust valves with respect to the cylinder head face is 0.7 – 1 mm.
Valve leakage test

The leakage test on the valves in the cylinder head (1) is carried out using the appropriate equipment (2 and 3).

VALVE SPRINGS

Before fitting, the characteristics of the valve springs must be checked using tool 99305049, and the data on load and elastic deformation compared with those given for new springs in the following figure.

Refitting the valves

To fit, reverse the order of the operations carried out for removal as described.

Lubricate the valve stems with engine oil.

Fitting the cylinder head

Before re-using the cylinder head bolts (2), with a micrometer (1) measure that the thread diameter of the bolts is not less than 11.5 mm at any point; if it is, replace them.
To fit and tighten down the cylinder head, follow the instructions given below:

- Arrange the gasket (1) on the crankcase with the word ALTO [TOP] (2) facing the operator.

FIGURE 137

[Diagram of cylinder head with numbers 1-28]

PLAN SHOWING CYLINDER HEAD BOLT TIGHTENING SEQUENCE

- Stage 3: Fit tool 99395216 (1) to the angle gauge wrench and tighten by an angle of 180°.

PUSH RODS

The valve pushrods must be free from distortion; the cup seatings for the adjustment screws and the ball ends locating in the tappets must not show any signs of seizing or wear; if they do, replace the rods. Pushrods for inlet and exhaust valves are identical and therefore interchangeable.

- Fit the cylinder head (2), insert the bolts (3) after lubricating them and tighten them as follows in the sequence shown in figure 137.
- Stage 1: Using a torque wrench (1), tighten to the preliminary torque of 70 Nm.
- Stage 2: Retighten to the torque of 70 Nm.

Fit the pushrods (1) into their seatings.
PUSH RODS

ROCKER SHAFT

COMPONENT PARTS OF THE ROCKER SHAFT

MAIN DATA FOR ROCKER SHAFT PEDESTALS, ROCKER SHAFT AND ROCKERS

Check that the contact surfaces are free from scoring or signs of seizing; if not, replace the parts showing deterioration.

Check the clearance between the valve gear rockers and the rocker shaft and between the pedestals and rocker shaft, which should be 0.016 - 0.052 and 0 - 0.061 mm respectively; replace any parts giving rise to clearances larger than those specified.

Check that the plugs fitted to the ends of the shaft provide a perfect seal.

Fitting the rocker shaft and adjusting the operating clearance between the valves and rockers

Fit the caps (1) onto the valve stems.
Fit the rocker shaft assembly (1). Adjust the operating clearance between the valves and rockers as described below.

The clearance between the rockers and valves is adjusted using wrench 99350108 (2), a bi-hexagon wrench (1) and a feeler gauge (3). The operating clearance is 0.25 ± 0.05 mm for both inlet and exhaust; subsequent adjustments are carried out when a value outside the range 0.15 - 0.45 mm is found. Move the cylinder on which the clearance is to be adjusted to the firing position; the valves of this cylinder are closed while those of the symmetrical cylinder are rocking. Symmetrical cylinders are 1 and 6, 2 and 5 and 3 and 4.

To speed up adjustment of the rocker to valve operating clearances, proceed as follows:
- Rotate the crankshaft until the valves of no. 1 cylinder are rocking and adjust the valves marked with an asterisk as shown in the table:

<table>
<thead>
<tr>
<th>Cylinder no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

- Rotate the crankshaft until the valves of no. 6 cylinder are rocking and adjust the valves marked with an asterisk as shown in the table:

<table>
<thead>
<tr>
<th>Cylinder no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

LUBRATION

Engine lubrication is obtained by means of a gear type pump (fig. 147) fitted to the lower part of the crankcase in line with the front main bearing; it is driven by the crankshaft gear.

OIL PUMP

FIGURE 147

1. Pump body
2. Relief valve
3. Driven gear
COMPONENT PARTS OF THE OIL PUMP ASSEMBLY

Checks
Check that the gears (5, 17, fig. 148) and gear wheel (7) show no signs of wear or seizing; if they do, replace the complete pump.

Check that the valve (11, fig. 148) slides freely in its housing and shows no signs of seizing or scoring; also check the setting data for the relief spring (10) compared with those given in figure 151.

Valve starts to open: 6 bars; valve finishes opening: 11 bars

SECTIONAL VIEW OF OIL PUMP

SECTIONAL VIEW OF OIL PRESSURE RELIEF VALVE

FIGURE 151

MAIN DATA FOR CHECKING THE RELIEF VALVE SPRING

134.55 N ± 6.73
245.70 N 12.3
36.9
23.2
29
OIL FILTER

Two double filtration filters are fitted to the engine. Opening pressure for the filter valve: 2.5 ± 0.2 bars.

SECTIONAL VIEW OF THE OIL FILTER

When fitting the filters, observe the following instructions:
- oil the seals
- screw the filters up until the seals contact the seating bases
- tighten further for another 3/4 of a turn

Fitting the oil pump

COOLING WATER PUMP

The water pump is of the centrifugal impeller type. The pump bearing is integral with the rotor spindle.

Water sealing between the pump body (4, fig. 154) and the spindle (2) is obtained by means of a seal (5).

The screw (3, fig. 154) retaining the bearing must be locked in its housing using LOCTITE 242 sealant.

FIGURE 154

SECTIONAL VIEW OF WATER PUMP

Check that the pump body has no cracks or water leaks; if it has, replace the water pump complete.

Fit the oil pump (2), the suction (1) and delivery (3) pipes.
MOUNTING OF THE INJECTION PUMP AND TIMING
(FOR ENGINES WITH ROTARY INJECTION PUMP)

Fit the injection pump, proceeding as follows:
☐ check that the timing gears are set correctly

☐ install the injection pump (1), lining up the double recess inside the drive coupling with the double dog in the sleeve
☐ screw up the screws without tightening them fully

☐ turn the engine forwards and bring the 8° ± 30° mark (2) engraved on the flywheel, indicating injection advance, into line with the reference pointer (1)
☐ under these conditions, the control piston of the pump should have travelled 1 mm, the value being read off from the dial gauge
☐ if this is not the case, rotate the pump body in its slotted hole until the specified value is obtained
☐ fully tighten the pump securing screws
☐ remove tool 99395099 and screw the plug back into the closure screw.

screw on tool 99395099 (2) complete with the hundredths dial gauge (1) with the stylus in contact with the crown of the control piston
☐ apply 3 mm preload to the dial gauge
☐ turn the engine backwards until the control piston on the pump reaches BDC as indicated by the dial gauge zero the dial gauge
MOUNTING OF THE INJECTION PUMP AND TIMING

(FOR ENGINES WITH ROTARY INJECTION PUMP)

Fit the injection pump, proceeding as follows:

- check that the timing gears are set correctly
- install the injection pump (1), lining up the double recess inside the drive coupling with the double dog in the sleeve
- screw up the screws without tightening them fully
- remove the plug (1) on the pump closure screw
- turn the engine forwards and bring the 3° ± 30° mark (2) engraved on the flywheel, indicating injection advance, into line with the reference pointer (1)
- under these conditions, the control piston of the pump should have travelled 1 mm, the value being read off from the dial gauge. If this is not the case, rotate the pump body in its slotted hole until the specified value is obtained
- fully tighten the pump securing screws
- remove tool 99395099 and screw the plug back into the closure screw

screw on tool 99395099 (2) complete with the hundredths dial gauge (1) with the stylus in contact with the crown of the control piston
apply 3 mm preload to the dial gauge
turn the engine backwards until the control piston on the pump reaches BDC as indicated by the dial gauge zero the dial gauge
OVERHAUL OF THE ELECTRIC MACHINE

About the operations of dismantling, overhaul, re-fitting of the components of the electric machine, please refer to the specific manual supplied with each genset.

REASSEMBLING THE ENGINE

Fit the timing gear cover (3). Fit tool 99360352 to the flywheel to prevent it from rotating. Fit the hub (1) with locking plate; tighten the nut with a torque wrench (2) to a torque of 300 Nm and bend over the locking plate (4).
Fit the belts tensioner; water pump pulley (1) the pipe from the water pump to the radiator.

Fit the belts (3) and the alternator (4)

Fit the injectors (1), securing them with the brackets (2), fit the fuel return pipe (3) and the rocker cover (4) with gasket.

Turn the engine through 180°, position the gaskets, coat with sealant at the joints; fit the sump (1), the fan duct support and the bracket for the heat exchanger cooling pipes.

For engines with in-line injection pump:
Fit the flywheel cover (1), the inlet manifold (2), the injection pump (3), with the fuel filter (5), injectors lines:

For engines with rotary injection pump:
Fit the flywheel cover (1), the inlet manifold (2), the injection pump (3), with the fuel filter (5), injectors lines; the actuator.
Fit the heat exchanger (1) and the two connecting pipes:
the oil filter(2); the turbocharger(4), the oil delivery and return pipes.

ASSEMBLING OF THE ALTERNATOR WITH THE ENGINE

For the alternator fitting carry out the following operations:
- Place the flex-plate of the alternator on the flywheel centering.
- Block the fixing screws of the alternator bell to the engine.
- Block the fixing screws of the flex-plate to the flywheel.

Fit radiator with the relevant connection pipes(1), and guard for fan and alternator; air cleaner(2); electric machine (3); electric wiring.
Complete all these operations assembling the relevant lines.
Refill the engine oil sump according to the indicated quantities.