FOREWORD
Thank you for choosing FPT and congratulations for your choice of engine.
Before carrying out any operation involving the engine and its equipment, please read carefully the instructions contained in this manual. Compliance with them is the best way to guarantee a perfect and durable operation of your engine.

The contents of this manual only refer to the standard configuration of the engine and the pictures are given only as an indication. Some instructions provided describe the sequence to be applied in order to obtain engine’s and relevant equipment’s expected performance. In some cases they depend upon the configuration of controls and fittings of the boat on which the engine is installed. Although they may differ from the contents of this manual, please refer to yard instructions or to a specific manual thereof.
The information contained herein are updated as of the date of their publishing.
The Manufacturer reserves the right of applying changes without notice and at any time, for technical or commercial reasons and in order to make engines compliant with the law requirements of the different countries.
The Manufacturer waives any liability for any errors or omissions.

The FPT Customer Service Network competence and professionalism of the Customer Service Network is always available wherever you are.
TABLE OF CONTENTS

- **GENERAL** .. 3
 - Guarantee .. 3
 - Spare parts ... 3
 - Liabilities .. 3
 - Safety ... 3
 - C13 ENS M33 engine technical data 4
 - C13 ENT M50 engine technical data 6
 - C13 ENT M77 engine technical data 8
 - Labels ... 10

- **USE** ... 11
 - Preliminary testing ... 11
 - Starting and stopping the engine 11
 - Starting and stopping the engine from
 an analog instrument panel 12
 - Recognizing alarm statuses 15
 - Engine start-up and shut-down from fpt analogue
 instrument panel .. 16
 - Digital monitor for reading engine parameters and
 displaying alarms ... 19
 - Safety and monitoring system 22
 - Managing C13 ENS - ENT M50 engines from relay box 30
 - Managing the C13 ENT M77 engine from relay box 32
 - For a correct use of the engine 33
 - Special warnings .. 33
 - Running-in .. 35
 - Refuelling .. 35

- **INSPECTIONS AND MAINTENANCE** 37
 - Maintenance staff ... 37
 - Accident prevention 37
 - Frequency ... 38
 - Prescriptions .. 40
 - How to .. 40
 - Moving The Engine 51

- **LONG ENGINE INACTIVITY** 52
 - Engine Preparation For Long Inactivity Periods 52
 - Commissioning After An Extended Period Of Inactivity ... 53
 - First start-up after long inactivity periods 53

- **ENGINE FAULTS** .. 54

- **EMERGENCY ON BOARD** 55

- **APPENDIX** ... 55
 - Oil viscosity compared to ambient temperatures 57
 - On board panels requirements 58
 - Digital instrument panel - Previous version 59
 - Recognizing alarm statuses 61
GENERAL

GUARANTEE
In order to obtain the engine best performance and to make use of FPT guarantee it is necessary to strictly observe the instruction contained in this manual. Failure to do so may cause the guarantee to become invalid.

SPARE PARTS
In order to maintain the original integrity of the engine, it is essential to use only FPT genuine spare parts. Using non genuine spare parts may cause the guarantee to decay and waives any FPT liability for the entire life of the engine.

LIABILITIES
The Manufacturer’s liability is subject to the execution of the control and maintenance interventions contained and described in this manual, the performance of which shall be duly proven. Should any extraordinary maintenance intervention be required, it shall be carried out by qualified staff at FPT shop, using the specific instruments and equipment.

SAFETY
The following information is provided in order to bring the attention to the use of the engine in order to prevent any damage to people and properties arising out of misconduct.

- Engines should be used exclusively for the applications stated by the manufacturer.
- Any tampering, modifications, or use of non-original parts may jeopardize the safety of service personnel and boat users; **absolutely avoid** any change to cables or units of the engine or to connect it to foreign electric networks.
- Pay attention to the moving parts of the engine, to those with high temperature and to the circuits with pressurized fluids, as the electric equipment is subject to voltage and electric currents.
- Engine exhaust gases can be dangerous for health.
- Engine displacement should take place with suitable lifting means, using the special eyelets provided.
- Do not commission the engine before having met the safety requirements provided for the boat on which it has been installed and observe local rules and regulations.
- Any required intervention in order to improve use and conservation of the engine should be carried out exclusively by FPT approved staff.

See **INSPECTIONS AND MAINTENANCE** for further safety recommendations.
C13 ENS M33 ENGINE TECHNICAL DATA
The technical acronym and the serial number are specified on the nameplate which - based on the model - can be found on different parts of the engine: flywheel casing, tappet cover, coolant pan.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>C13 ENS M33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine family</td>
<td>F3B</td>
</tr>
<tr>
<td>Cycle</td>
<td>4-Stroke Diesel</td>
</tr>
<tr>
<td>Number and arrangement of cylinders</td>
<td>6, in line</td>
</tr>
<tr>
<td>Stroke boring</td>
<td>135 x 150 mm</td>
</tr>
<tr>
<td>Total displacement</td>
<td>12.880 cm³</td>
</tr>
<tr>
<td>Air supply</td>
<td>Boosted (TC)</td>
</tr>
<tr>
<td>Injection method</td>
<td>Direct EUI with electronic management</td>
</tr>
<tr>
<td>Engine rotation direction</td>
<td>Counterclockwise (from flywheel side)</td>
</tr>
<tr>
<td>Weight without liquids</td>
<td>1.310 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical system</th>
<th>24 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery/ies capacity</td>
<td>120 Ah or higher</td>
</tr>
<tr>
<td>breakaway current</td>
<td>900 A or higher</td>
</tr>
</tbody>
</table>

Available ratings (*): C13 ENS M33
D 243 kW (330 CV) @ 1800 rpm

(*) Flywheel net power compliant with ISO 3046-1 standard. Testing conditions: T 25 °C; atmospheric pressure 100 kPa; relative humidity 30%.

WARNING
It is strictly forbidden to alterate the above mentioned features and more specifically to change the information stored in the electronic units of the injection system or the engine and relevant fitting features. Any non observance of the above shall null any warranty and FPT liability.
C13 ENS M33 Engine

C13 ENS M33 Engine
C13 ENS M50 ENGINE TECHNICAL DATA

The technical acronym and the serial number are specified on the nameplate which - based on the model - can be found on different parts of the engine: flywheel casing, tappet cover, coolant pan.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>C13 ENT M50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine family</td>
<td>F3B</td>
</tr>
<tr>
<td>Cycle</td>
<td>4-Stroke Diesel</td>
</tr>
<tr>
<td>Number and arrangement of cylinders</td>
<td>6, in line</td>
</tr>
<tr>
<td>Stroke boring</td>
<td>$135 \times 150 \text{ mm}$</td>
</tr>
<tr>
<td>Total displacement</td>
<td>$12,880 \text{ cm}^3$</td>
</tr>
<tr>
<td>Air supply</td>
<td>Boosted and Aftercooled (TCA or TAA)</td>
</tr>
<tr>
<td>Injection method</td>
<td>Direct EUI with electronic management</td>
</tr>
<tr>
<td>Engine rotation direction</td>
<td>Counterclockwise (from flywheel side)</td>
</tr>
<tr>
<td>Weight without liquids</td>
<td>1.345 kg</td>
</tr>
</tbody>
</table>

Electrical system 24 V

Battery/ies	120 Ah or higher
capacity	900 A or higher
breakaway current	

<table>
<thead>
<tr>
<th>Available ratings (*)</th>
<th>C13 ENT M50</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>382 kW (520 CV) @ 2000 rpm</td>
</tr>
<tr>
<td>D</td>
<td>368 kW (500 CV) @ 2000 rpm</td>
</tr>
</tbody>
</table>

(*) Flywheel net power compliant with ISO 3046-1 standard. Testing conditions: T 25 °C; atmospheric pressure 100 kPa; relative humidity 30%.

WARNING

It is strictly forbidden to alterate the above mentioned features and more specifically to change the information stored in the electronic units of the injection system or the engine and relevant fitting features. Any non observance of the above shall null any warranty and FPT liability.
C13 ENT M50 Engine

C13 ENT M50 Engine

C13 ENT M77 ENGINE TECHNICAL DATA

The technical acronym and the serial number are specified on the nameplate which - based on the model - can be found on different parts of the engine: flywheel casing, tappet cover, coolant pan.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>C13 ENT M77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine family</td>
<td>F3B</td>
</tr>
<tr>
<td>Cycle</td>
<td>4-Stroke Diesel</td>
</tr>
<tr>
<td>Number and arrangement of cylinders</td>
<td>6, in line</td>
</tr>
<tr>
<td>Stroke boring</td>
<td>135 x 150 mm</td>
</tr>
<tr>
<td>Total displacement</td>
<td>12.880 cm³</td>
</tr>
<tr>
<td>Air supply</td>
<td>Boosted and Aftercooled (TCA or TAA)</td>
</tr>
<tr>
<td>Injection method</td>
<td>Direct EUI with electronic management</td>
</tr>
<tr>
<td>Engine rotation direction</td>
<td>Counterclockwise (from flywheel side)</td>
</tr>
<tr>
<td>Weight without liquids</td>
<td>1.380 kg</td>
</tr>
</tbody>
</table>

Electrical system	24 V
Battery/ies capacity	120 Ah or higher
breakaway current	900 A or higher

Available ratings (*)

<table>
<thead>
<tr>
<th></th>
<th>C13 ENT M77</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>567 kW (770 CV) @ 2300 rpm</td>
</tr>
<tr>
<td>A2</td>
<td>515 kW (700 CV) @ 2300 rpm</td>
</tr>
<tr>
<td>B</td>
<td>442 kW (600 CV) @ 2300 rpm</td>
</tr>
<tr>
<td>C</td>
<td>397 kW (540 CV) @ 2300 rpm</td>
</tr>
</tbody>
</table>

(*) Flywheel net power compliant with ISO 3046-1 standard. Testing conditions: T 25 °C; atmospheric pressure 100 kPa; relative humidity 30%.

WARNING

It is strictly forbidden to modify the above mentioned features and more specifically to change the information stored in the electronic units of the injection system or the features of the engine and relevant fittings. Any non observance of the above shall null any warranty and FPT liability.
C13 ENT M77 Engine

C13 ENT M77 Engine

LABELS

Below you can find the explanation of the caution labels located on the engine.

NOTE: Labels with an exclamative point highlight a potential danger.

| **Lifting point (engine only).** | **Burn hazard:**
<table>
<thead>
<tr>
<th></th>
<th>Pressurised hot water expulsion.</th>
</tr>
</thead>
</table>
| **Fuel refill plug**
| (on tank, if available). | **Burn hazard:**
| | High temperature parts. |
| **Lubricant refill plug.** | **Fire hazard:**
| | Fuel presence. |
| **Lubricating oil dipstick.** | **Hazard of collision and contact**
| | with moving parts:
| | Presence of fans, pulleys, belts or other. |
USE

PRELIMINARY TESTING

Before each engine startup:

- Make sure that the sea water intake valve is open. Dry operation of the pump would cause in few seconds irreparable damages to the internal rotor.
- Check technical fluids level (fuel, engine oil and coolant).

WARNING!

Before starting up the engine make sure no comburent vapour or gas is in the engine room.

STARTING AND STOPPING THE ENGINE

For boats equipped with instrument panel not manufactured by FPT

Start-up and shut-down modes described on the following pages are applicable if an FPT instrument panel is installed on board. Should the boat be equipped with a customized dashboard which has been manufactured at the Yard or by the Boat builder, such procedures may change based on the panel's specific features. In such cases please observe the Yard's startup/stop sequences and read the indication instruments as specified in the relevant documentation.

Engines equipped with pre-lubrication electric system

The pre-lubrication feature is started by acting on the power switch of the electrical system and the relevant warning light lits up. The engine startup sequence described in the following pages shall take place after the required pre-lubrication time has elapsed and the warning light is turned off or only after the warning light has gone out.

Pre-lubrication of engine parts can also be carried out in manual mode. If necessary, proceed as follows:

1. Ensure that the ignition key switch is turned off (STOP).
2. Check that switch **B** on the pre-lubrication electronic unit is in “EV OFF” position, then press the adjacent pushbutton **A** towards “DISCHARGE”.
3. Keep the pushbutton pressed long enough to allow complete pre-lubrication.
4. Start the engine as described on the following pages.
ENGINE START-UP AND SHUT-DOWN FROM FPT ANALOGUE INSTRUMENT PANEL

Start-up procedure from main panel

Make sure that the electric switch with ENGINE ROOM - BRIDGE label on the Relay box unit, (usually located in the engine room) is turned to BRIDGE, then proceed as follows:

1. Lift the key switch safety cover (8), insert the key and turn it to the right, to **8B** position.

2. Check that the analog instruments provide acceptable reading with the values of the relevant physical parameters (temperature, battery voltage and oil pressure).

3. Wait for the acoustic alarm to stop and that the alarm warnings (5) on the signaling module are switched off (except for "alternator anomaly" and "oil low pressure"). At the same time check that testing of indicators is successful (see relevant section as regards test reading and module indication instructions).

4. Turn the key to **8C** position and release it without accelerating when the engine has started.

5. Check that the analog instruments provide acceptable reading with the new values of the relevant physical parameters (temperature, battery voltage and oil pressure).

6. In case startup fails, you can resume startup position only after releasing the key and after turning the switch **8A** to the stop position.

1. Coolant temperature indicator - 2. Tachometer and hour counter -

Switch key detail
Start-up procedure from secondary panel (fly-bridge)

1. Enable the secondary panel operation by turning the key switch on the main panel to 8B position (see instructions and procedure described in the previous paragraph).

2. Wait for the acoustic alarm to stop and that the warning lights (3) on the signaling module are switched off (except for “alternator recharge” and “oil low pressure”). At the same time check that testing of indicators is successful (see relevant section as regards test reading and module indication instructions).

3. Press the green push button (5) and release it upon startup.

4. Check that the revolution indicator reading is acceptable.

WARNING

For the onboard control panels to fully perform their relevant operations during navigation, it is essential that the engine startup is done only after the completion of warning lights and horn testing.

Engine stop

Before stopping the engine it is recommended to keep it running at idle and unloaded for few minutes; this will allow for a uniform reduction of temperature and avoid harmful thermal shocks.

A. To stop the engine from FPT main panel, turn the key switch to the stop position **8A** or act on any similar control if your boat is equipped with a customized dashboard.

For RINA homologated systems only:

1. Turn the ignition to the rest position **8A** (OFF);
2. Press the RINA stop button (red STOP button) (9) in the main FPT panel.

NOTE: In the case of emergency braking or dangerous situations, press the buttons to stop the engine.
Then, to stop the supply to the engine control unit, turn the ignition switch to the OFF position and press the RINA stop button.

B. To stop the FPT secondary panel press the red push button (6) located on it.

To restart the engine from the main panel:

1. Turn the key switch to the stop position **8A** to reset any panel operation enabled.
2. Proceed as shown.

To restart the engine from the secondary panel:

1. Make sure the panel is enabled (key switch on the main panel turned to **8B**).
2. Press the green push button (5) and release it when it has started, making sure that the revolution indicator reading is acceptable.

WARNING!

The stopping procedure for RINA homologated systems is different from standard systems.
RECOGNIZING ALARM STATUSES

FPT onboard panels equipped with analog instruments include an electronic module with indicator lights and interface circuits, timing and saving of alarms. The figure shows the module quadrant and the legend contains the meaning of the alarm pictorial corresponding to each light indicator; in some engine type and relevant fitting are not equipped with all of the features mentioned herein. Moreover these instructions may change based on the technical features provided by the boat manufacturer.

Operation

By rotating the key switch to 8B position the alarms and signaling module performs a 5 seconds efficiency test of all light indicators, except for those concerning “Pre-lubrication”, “Pre-post heating”, “EDC system fault”, and the horn beeps. The beep may be silenced before the end of the test, by pushing the relevant button. During the startup phase and for the next 15 seconds, any alarm function is inhibited; after such time interval each alarm condition detected by sensors on the engine causes the relevant indicator to blink and a simultaneous sound signal. The horn silencing obtained by pressing the relevant push button causes the non-blinking indicator to turn on and saves the alarm until the next engine stop.

*Alarm features not available with standard fitting.
STARTING AND STOPPING THE ENGINE FROM THE DIGITAL INSTRUMENT PANEL
(Not applicable to C13 ENT M77 engine)

Starting procedure from main FPT panel

Make sure that the electric switch with the words ENGINE ROOM - BRIDGE in the relay box (normally located in the machine room) is in the BRIDGE position, then proceed as follows:

1. Lift up the protective cover for the ignition switch (5), introduce the key and turn it to the right to position B.
2. Check that the panel readings are plausible with the physical parameter figures.
3. Wait for the acoustic alarm signal to stop, except for "Alternator faulty" and "Loe oil pressure" and, at the same time check that the outcome of the test is positive (see RECOGNITION OF ALARM STATES section).
4. Turn the key to position C; once the engine is started, release it avoiding accelerating.
5. Check that the readings are plausible with the new physical parameter figures (temperature, oil pressure and voltage).
6. If starting fails, after having released the key it will only be possible to return to the starting position after having placed the switch in rest position A.

The elements described above are supplied loose by FPT and it will be the responsibility of the Shipyard or the Fitter to position them in the instrument panel.
Starting procedure from secondary FPT panel or fly-bridge
(supplied on request)
1. Enable the secondary panel for operation by placing the ignition switch for the main panel in position B (instructions and procedure in the next paragraph).
2. Wait for the alarm to stop and the alarm indicators to go out except for the "Alternator faulty" and "Low oil pressure" (see RECOGNITION OF ALARM STATES section).
3. Press the green START button (3) and after starting release it checking that the readings are plausible with the new physical parameters.

The elements described above are supplied loose by FPT and it will be the responsibility of the Shipyard or the Fitter to position them in the instrument panel.
Stopping the engine

Before stopping the engine it is advisable to keep it turning over for several minutes idling in no load conditions; this will allow a uniform reduction of the temperature and prevent damaging thermal shock.

A. From the main FPT panel: on standard systems the engine is stopped by turning the ignition key to the rest position A.

NOTE: In the case of emergency braking or dangerous situations, press the buttons to stop the engine. Then, to stop the supply to the engine control unit, turn the ignition switch to the OFF position and press the RINA stop button.

B. From the secondary FPT panel: the engine is stopped by pressing the red STOP button.

WARNING!
The stopping procedure for RINA homologated systems is different from standard systems.

For RINA homologated systems only:
1. Turn the ignition to the rest position A (OFF);
2. Press the RINA stop button (red STOP button) in the main FPT panel.

NOTE: Make sure that the panel is enabled (main panel ignition switch in position B).
2. Press the green START button (3) and after starting release it checking that the readings are plausible.

To restart the engine from the main panel:
1. Turn the ignition key to the rest position A to reset all the functions carried out by the control panels.
2. Proceed as described in the appropriate paragraph.

To restart the engine from the secondary panel:
1. Make sure that the panel is enabled (main panel ignition switch in position B).
2. Press the green START button (3) and after starting release it checking that the readings are plausible.

To restart the engine from the secondary panel:
1. Make sure that the panel is enabled (main panel ignition switch in position B).
2. Press the green START button (3) and after starting release it checking that the readings are plausible.
DIGITAL MONITOR FOR READING ENGINE PARAMETERS AND DISPLAYING ALARMS

The digital monitor for reading the engine operating parameters has an instrument bar at the bottom of the screen that summarizes the structure displayed by each individual button in the form of a symbol. The choice of function is made by pressing the corresponding button, from left to right. The instrument bar disappears after 5 seconds of inactivity.

When the display is turned on an initial screen with the FPT logo appears for about 7 seconds. The display will carry out an autodiagnosis at the same time. If the display gives a "beep" for more than a second this means that the autodiagnosis has failed.

As soon as the initial screen with the FPT logo disappears, the monitor will show the readings of its virtual indicators (Tri screen). A few moments later the last screen displayed before switching off will appear.
Display of engine version parameters (in standard configuration)

The table lists the parameters transmitted by the CAN line (J1939) and displayed on the control monitor in the modes described previously: screen with one, three or four windows. The DB in the table indicates the internal data base that stores all the data transmitted by the engine. The complete list of the internal data base can be consulted, on the monitor, by means of the configuration menu under the item "DB Viewer". If the parameter requested is not available it will not be possible to select it and if it becomes unavailable during the display the following will be shown on the monitor "- - -".

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>Datalinks</th>
<th>Screen windows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>J1939</td>
<td>3</td>
</tr>
</tbody>
</table>

ELECTRICAL SECTION Volt or Ampere

- Battery voltage
- Residual fuel with GPS
- Instantaneous Fuel Economy
- Distance (km, milia, o Nmilia)
- Remaining distance with GPS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>Datalinks</th>
<th>Finestre schermo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>J1939</td>
<td>3</td>
</tr>
</tbody>
</table>

Pressure (kPa, PSI o bar)

- Barometric pressure
- Turbocharging pressure
- Engine oil pressure

Temperature (°C o °F)

- Engine coolant temperature
- Fuel temperature
- Exhaust gas temperature

Percentage (%)

- Acceleration position
- Refrigerant level
- Engine torque current percentage
- Engine torque at rpm

Speed (RPM, km/h, MPH o KTS)

- Engine speed

Time (h)

- Total hours of engine operation

20
Alarm display

When an active alarm is received by the monitor a flashing window or a general alarm symbol appears depending on the control unit setting, superimposed on the screen in use at the time with the failure warning. A warning sound is activated at the same time.

The list of active alarms is accessed by pressing any of the buttons. The alarms that have not yet been recognized are grey on a black background.

After recognizing the alarms the screen returns to black characters on a grey background and the possibility of exiting the screen returns ("door open" symbol).

Memorizing alarms

When accessing the list of alarms memorized the display automatically shows the most recent alarm. It is possible to scroll through the list using buttons 1 and 2 under the arrows (↑ and ↓). It is not possible to exit this screen until all the alarms have been recognized. Recognition of the alarms takes place by pressing button 3 (under the HOLD RESET symbol). The alarms are automatically cancelled when no alarm signal is transmitted to the monitor for a long time.

The alarms memorized can be displayed by pressing button 4. If no alarm is memorized an error message is displayed. All the alarms memorized in the monitor can be deleted by pressing button 3.

WARNING

The seriousness of the alarm is displayed in the flashing window:
- **MS:** VERY SERIOUS
- **MOD:** MODERATELY SERIOUS
- **LS:** LESS SERIOUS
Initial launch of engine control monitor

The FPT monitor for reading parameters can operate with 6 different types of engines. If will be the fitter or the rigger’s job to programme the correct operating modes for the specific type of engine. The information relating to fuel consumption requires the correct programming of the maximum introduction data relating to the performance of the engine. Proceed as follows:

Using the buttons underneath the arrows (↓ and ↑) select the engine control unit. Once it is set, the screen for the engine control unit will not be displayed during the normal operation of the monitor.

Keep the standard basic set value

SAFETY AND MONITORING SYSTEM

In compliance with certification authority regulations, some vehicles are equipped with a security system made up of specific sensors located on the engine and of a synoptic panel. The system monitors engine operating parameters. Together with the monitoring function, system electronics sound an alarm when the thresholds considered to be safe limits are exceeded and bring about emergency engine shutdown in the event of possible danger to those on board.

System unit use and interpretation procedures refer to the equipment in the standard FPT configuration. Information associated with functions that require connection to external equipment, such as echosounding devices and GPS, is intentionally displayed in brief. Programming procedures that are the responsibility of the Supplier or Assistance Service technicians are not shown. Refer to the equipment Supplier’s manuals for information not given in the present document.

Monitoring

The display unit allows constant checking of engine parameters as required by type approval regulations for rapid detection of arising faults. Information contained in the unit memory permits events to be analysed for a long period preceding an enquiry. Alarms triggered by exceeding the thresholds treated as the limit value of each parameter are signalled by a warning sound and the frame surrounding the box containing information on the faulty parameter flashes.

Information on pages displayed may vary according to the number and type of engine installed. Key function varies according to the different displays.

Press the "<<" and ">>" keys to display in sequence the pages containing monitoring parameter information, including service intervals and optional information such as that shown below. The standard FPT configuration will identify the following information:

- Engine coolant pressure (FRSHWATER PRESS)
- Low engine coolant level (LOW WATER LEVEL)
- Low engine coolant pressure (FRESHWATER LOW P)
- High engine coolant temperature
- Engine oil pressure
- Absence of engine oil pressure (LOW OIL PRESS)
- Engine oil temperature (OIL TEMP)
- Oil filter clog (OIL FILTER CLOG)
- Presence of water in fuel (WATER IN FUEL)
- Fuel pressure
- Fuel filter clog (FUEL FILTER CLOG)
- Injection system damage
- Failed battery recharging (BATTERY WARNING)
- Pre-lubrication in progress (PRELUBRICATING)*
- System power supply voltage (VOLTMETER)
- Exhaust gas temperature (EX GAS TEMP)
- Engine revolution speed, from EDC system (ENGINE E)
- Engine stop circuit fault (MAN STOP L FAULT)
- Engine revolution speed, from sensor (ENGINE S)
- Engine revolution speed sensor fault (PICK-UP L FAULT)
- Automatic engine stop circuit fault (AUTOSTOP L FAULT)
Air filter clog (AIR FILTER CLOG)
- Reversing gear oil pressure (GEAR OIL PRESS)*
- Absence of gear oil pressure (LOW GEAR OIL P)
- Sea water circuit pressure (SEA WATER PRESS) *

* Information only provided if the relevant components are present.

Alarm thresholds are set by Technical Assistance Service personnel and require input of a password.

Setting display mode

Interface options permit adjustment of brightness, contrast and image presentation mode, featuring reversal of light/dark.

1. Press the key “MENU” to display the quick choice window.
2. Press the “<<” and “>>” keys to highlight setting display mode.
 - “BRIGHTNESS”, “CONTRAST”, DAY/NIGHT”.
3. Press the “OK” key to confirm choice.
4. Use the “<<” and “>>” keys to change parameter settings.
5. Press the key “OK” again to confirm choice.
6. To exit “MENU” press the “CLR” key.

Advanced functions

Monitored parameters can be presented in different modes including a graph with a time plot.

Proceed as follows to select the mode:

1. Press the key “MENU” to display the quick choice window.
2. Use the “<<” and “>>” keys to select option “DATALOGGER”, inside the window.
3. Press the “OK” key to confirm and a second window will appear with the options.
4. Select the required display mode by pressing the “<<” and “>>” keys (see below for the different options)
5. Press “OK” to confirm.
Display mode

- **“GRAPHICS”:** displays the parameter trend versus time; the “ZOOM” key allows the time interval shown on the display to be altered.

1. Press the “<<” and “>>” keys to display the different parameter graphs.

2. Press the “CLR” key to exit current mode.

- **A002: GEAR OIL PRESS =14.8 bar**

![Graph showing gear oil pressure over time]

1. Parameter displayed - 2. Ends of the scale and unit of measurement - 3. Meaning of the key (selection of period: last 15 min, 1 hour, 6 hours, 24 hours) - 4. Duration of selected and displayed period.

- **“SAVE”:** memorises the parameters detected by the system at specific engine service intervals. The data is saved when the “OK” key is pressed. If pressed again, the data will be uploaded again. Memorised values can be displayed in all available forms.

- **“AUTO REC.”:** modifies information registration modes; changes cannot be made.

- **“HOURCOUNTER”:** mode used to manage recording of effective power unit service time; information is displayed in the form of hours (ENGINE) or statistics (STATISTIC). Data input is password protected. The information can be used by Service Centre personnel to adjust the scheduling of servicing intervals. When in this mode it is possible to select the “SERVICE RESET” option, displayed in the “Service interval display” section.

- **“FUELCOUNTER”:** (not programmed)

- **“SERVICE ONLY”:** mode used for programming restricted to Technical Assistance Centre personnel, password-protected.

Service interval display

A list showing the number of engine service hours permitted before servicing is required is displayed with the basic functions. The page sequence may be displayed using the “<<” and “>>” keys. The unit’s internal timer gives plenty of notice when services are due by counting down through actual hours to reach negative values. After each service, the vessel user or vessel crew responsible for maintenance must reset the initial data display used for the countdown (see “Servicing interval reset” procedure).

Only Technical Service personnel can amend the various time intervals in hours.
1. Number of engine service hours - 2. Service hours remaining before service is due (a minus sign indicates servicing is overdue)

Service interval reset

At the end of a service the calculation information referring to the number of service hours before the next service should be reset; proceed as follows:

1. Press the key “MENU” to display the quick choice window.
2. Use “<<” and “>>” keys to select option “DAT ALOGGER”, inside the window.
3. Press the “OK” key to confirm and a second window will appear with the options.
4. Select “HOURCOUNTER” mode by pressing the “<<” and “>>” keys and confirm with the “OK” key.
5. Use the “<<” and “>>” keys to select the “SERVICE RESET” option inside the new window.
6. Press “OK” to confirm and the list of scheduled services with the number of service hours left before servicing will appear; if a minus sign (-) is displayed, servicing is overdue.
7. Use the “<<” and “>>” keys to highlight the entry relating to the last service.
8. Press “OK” twice to confirm.
9. Check that the number of hours indicated as the maximum period is displayed. If not, repeat the final steps of the procedure.
Alarm and safety management

The system electronics check all the parameters for which monitoring is required in sequence, irrespective of the page displayed. There are 2 lower and 2 upper pre-alarm and alarm thresholds for each parameter, which sometimes coincide. The programmed thresholds are displayed on the analogue bar indicator for the parameter (see diagram). Only Technical Service Assistance personnel can modify threshold settings.

When the value of a parameter exceeds the programmed threshold a warning sound is activated and the associated indicator boxes is highlighted by a dark flashing border (light in “NIGHT” mode). Pressing the “CLR” pushbutton stops the warning sound and the frame stops flashing but remains present. The alarm status is highlighted until normal status is reset and the “ACK” pushbutton is pressed.

WARNING

When the alarm is triggered it can be useful to press the “ACK” pushbutton in order to check that a fault is really present. If the threshold is only exceeded momentarily the alarm will stop immediately. If it persists, diagnosis must be carried out to determine the cause. Having found the cause, normal display status cannot be reset until the “ACK” pushbutton is pressed.

ATTENTION!

In order to keep the engine undamaged and prevent serious risk to equipment, the Electronic Unit is programmed to stop the engine automatically if the following conditions occur:
- Low engine oil pressure (LOW OIL PRESS)
- High engine coolant temperature (HIGH WATER TEMP)
- High engine revolution speed (ENGINE S).
Monitoring the route and voyage

When the interface is connected to a GPS or autopilot system a tracking graphic useful for navigation will appear among the monitoring pages.

Key to abbreviations:
- RNG – Distance from the next waypoint
- BRG – Direction of the next waypoint
- VMG – True speed to waypoint
- ETE – Estimated time of arrival
- TRN – Direction of route through waypoint
- XTE – Off route error

Depth monitoring (Echosounder)

When the interface is connected to an echosounder, the monitoring pages will display a graph showing seabed depth changes and the relative value in metres associated with a temperature value.
Low engine oil pressure sensor efficiency test
In compliance with certification authority regulations, system equipment includes devices that check alarm operating efficiency. An example is the oil shut-off tap (2) on the “Low oil pressure” (WA) sensor fitting, used to check the efficiency of the associated function.

Replacing the engine control unit
To offer a higher level of safety during voyages on vessels equipped with a single engine, it is necessary to provide a second auxiliary electronic engine control unit alongside the electronic control unit to allow rapid replacement in case of damage.
C13 ENT M77 Engines

In order to insert the connectors on the ECU, attain to the procedure illustrated before in reverse sequence.

At the end of the operations:
- reconnect the terminals to the battery;
- start the engine to carry on an efficiency test.

MANAGING C13 ENS M33 - ENT M50 ENGINES FROM RELAY BOX

The following functions can be managed through the “Relay box” unit, which is usually installed close to the machine room:
- Engine start-up and shut-down.
- Control post selection: bridge or engine room.
- Revolution speed increasing and decreasing.
- Self-diagnosis test (only for Customer Service Network).

WARNING!
When the engine is rotating, do not operate the ENGINE ROOM / BRIDGE switch.

Startup procedure
1. Turn the switch to 1 ENGINE ROOM. The START-STOP (2) push button nearby is enabled; this action disables any function of on board panels located on the bridge and fly-bridge.
2. Press the 2 push button to ENGINE START position and release it upon startup.

Speed management procedure
1. Turn the 4 switch to PTO ON position;
2. To speed up: press and hold the 3 button in the PTO+ position until the required speed is reached, then release it.
3. To speed down: press and hold the 3 button in the PTO- position until the required speed is reached, then release it.
Once the required speed has been reached, it will be maintained until the 4 switch is turned to PTO OFF position or the engine is stopped.

Stop procedure
1. Press the 2 push button to STOP position until the engine is completely stopped.
2. Bring the switch 1 back to BRIDGE position to allow for the use of controls located on the on board panels and to inhibit the use of the START-STOP button of the "Relay box".

Self-diagnosis procedure
The use of the CHECK (5) push button allows the Customer Service Network to read the self-diagnosis information save in the Engine electronic control unit. The 6 LED will show the code by blinking.

WARNING!
When the engine is rotating, do not operate the ENGINE ROOM / BRIDGE switch.
MANAGING THE C13 ENT M77 ENGINE FROM RELAY BOX

The engine fitting includes a "Box relay" unit which is usually located near the engine room and which provides management of the following functions:

- Start and stop.
- Control post selection: bridge or engine room.
- Revolution speed increasing and decreasing.
- Self-diagnosis test (only for Customer Service Network).

Startup procedure

1. Turn the switch to 1 ENGINE ROOM. The START-STOP (2) push button nearby is enabled; this action disables any function of on board panels located on the bridge.
2. Press the 2 push button to START position and release it until startup is obtained.
3. To speed down: press and hold the 2 button in the START position until the required speed is reached, then release; if repeated action toggles speed up and speed down. The speed reached at each change will be maintained until the next change or the engine stop.

Stop procedure

1. Press the 2 push button to STOP position until the engine is completely stopped.
2. Bring the switch 1 back to BRIDGE position to allow for the use of controls located on the on board bridge panels and to inhibit the use of the START-STOP button of the "Relay box".

WARNING!

When the engine is rotating, do not operate the ENGINE ROOM / BRIDGE switch.
FOR A CORRECT USE OF THE ENGINE

- Do not extend the startup control when the engine is started.
- Do not remain at the quay to wait for engine warm-up. After startup slowly start navigation. The correct operating temperatures are reached with the engine running at medium power.
- Do not proceed too long at slow speed as it enhances the production of harmful engine emissions and does not guarantee its better performance.
- Engine speed-up and speed-down should be performed gradually in order to allow a regular combustion and a better performance of all engine organs.
- Cruising maximum speed should not exceed 90% of maximum power (see ENGINE TECHNICAL DATA).
- During navigation check that:
 - Engine coolant temperature does not reach alarm thresholds.
 - Oil pressure is kept within the normal values provided.

SPECIAL WARNINGS

Coolant high temperature

In case the temperature on the instrument is excessive or an alarm is off, reduce speed and return to the harbor and check the sea water intake and cooling circuits status. The following should also be checked:
- water and alternator belts tensioning.
- thermostatic valve operation.
- cleaning of heat exchangers.

<table>
<thead>
<tr>
<th>WARNING!</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the engine is hot, inside the cooling circuits a pressure is generated which can cause the sudden exit of the hot liquid, generating burn hazards. Open the coolant pan refill cap only if necessary and exclusively when the engine is cold.</td>
</tr>
</tbody>
</table>

Low lubricant pressure

In case the pressure reading on the instrument is considered not sufficient or if a "Low oil pressure" led turns on, stop the engine and check the oil level. Refill if necessary (see section CHECKS and MAINTENANCE). Should signaling persist, return at low speed and contact an Customer Care Center.
Water in the fuel pre-filter
It’s a good habit to drain the water inside filters before the relevant led turns on. Avoid using the engine when the tank contains only the reserve fuel; such condition fosters the formation of condensation and the suction of sludge or air, causing the engine to stop.

WARNING!
Use the utmost care when refueling and avoid liquid or solid polluting agents to enter the tank. It is reminded that smoking or ignition of flames is prohibited during refueling.

Air filter clogging and inefficient exhaust circuit
Regularly inspect the cleaning of air suction inlets and exhaust piping. Maintenance intervals contained in this manual only take into account the performances of the engine parts and not of those parts manufactured at the Yard or any other external intervention.

WARNING!
Visually check that the exhaust circuit is not obstructed or damaged in order to avoid formation of hazardous fumes inside the hull.

Battery or alternator recharging fault
Periodically check or have checked the cleaning, wear and tensioning condition of the tensioning belt.

WARNING!
Tensioning parts are protected with safety casing. Remove them only when the engine is not running.

Anomalies in the electrical system
Periodically check, especially during the winter, the cleaning and efficiency condition of batteries. Proceed by checking and refilling as detailed in the CHECK AND MAINTENANCE section and observe the warning therein. In case batteries are replaced, observe the features detailed in GENERAL section.

WARNING!
Contact a specialised office and check battery and recharging system efficiency if the voltmeter indicates a voltage below 11 V (for 12 V rated systems), or 22 V (for 24 V rated systems).
RUNNING-IN

Thanks to the engine construction advanced technology, non special running-in procedure is required. However it is recommended to avoid at least for the first 50 hours, using the engine at high speeds for extended periods of time.

REFUELING

<table>
<thead>
<tr>
<th>Parts to be refueled</th>
<th>C13 ENT C13 ENS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>liters (kg)</td>
</tr>
<tr>
<td>Cooling circuit(1)</td>
<td>45</td>
</tr>
<tr>
<td>Cooling circuit(2):</td>
<td></td>
</tr>
<tr>
<td>Total capacity(3)</td>
<td>42 (38)</td>
</tr>
<tr>
<td>Periodical replacement</td>
<td></td>
</tr>
<tr>
<td>Oil pan at minimum level</td>
<td>38,5 (35)</td>
</tr>
<tr>
<td>Oil pan at maximum level</td>
<td>29 (26,3)</td>
</tr>
<tr>
<td></td>
<td>36 (32,6)</td>
</tr>
</tbody>
</table>

(*) Does not refer to C13 ENS M33 engine.

(1) Use a water and PARAFLU 11 mixture at 50% also during summer. As an alternative to PARAFLU 11, use a product complying with SAE J 1034 international standards.

(2) Use lubricants complying with the following international specifications: ACEA E3 - E5 (high power engines), API CF - CH4 (associated to fuels with a sulfide percentage of < 0,5%), MIL - L - 2104 F.

The grade of viscosity to be used in relation to environment temperature can be found in the table in the appendix.

The oil consumption is considered as acceptable up to a quantity equal to 0.5% of fuel consumption.

(3) The quantities shown refer to the first refueling and concern the refilling of engine, oil pan and filter.
(4) Use only commercially available diesel oil (complying with EN 590 standard). Use of additives is recommended. Use of fuel derived from the synthesis of organic substances and vegetable oils (Biodiesel) is not allowed.

WARNING

Refuelling from drums or tanks may pollute diesel oil and therefore damage the injection system. If necessary filter or settle impurities before refueling.

Low temperature diesel oil

The DIN EN590 distinguished different classes of diesel oil and identified the characteristics of those more suitable for being used at low ambient temperatures. It is the Oil company's responsibility to observe the regulations governing the distribution of fuels suitable to the climatic and geographic conditions in the different countries.

Marine gear oil refueling

For the quantity and type of oil to be used in the marine gear, consult the manual supplied by the Manufacturer.
INSPECTIONS AND MAINTENANCE

MAINTENANCE STAFF

Engine inspection and maintenance interventions described in the following section require training, skills and the observance of the safety regulations provided. Therefore only specialized staff can perform them as specified below.

- **Inspections**: shop operators or boat user if necessary.
- **Periodical maintenance**: qualified staff, equipped with suitable tools and protection gear. Interventions marked with a wrench (see picture).
- **Extraordinary maintenance**: Servicing Centers’ qualified staff having the specific technical know-how and equipment. Interventions marked with a wrench (see picture).

The most qualified Assistance Centres are those which make up the FPT Technical Assistance Network.

ACCIDENT PREVENTION

- Always wear safety shoes and gear.
- Do not wear loose garments, rings, bracelets and/or necklaces near the engines or moving parts.
- Wear safety gloves and goggles when:
 - refilling batteries with acid solution
 - refueling with inhibitors or deicers
 - replacement or refueling of lubricant (hot engine oil can cause burns. Proceed with interventions only when it has reached a temperature lower than 50 °C).
- When performing interventions inside the engine housing, use utmost care when moving in order to avoid contact with rotating or high temperature items.
- Wear safety goggles when using compressed air (the maximum cleaning air pressure is 200 kPa (2 bar, 30 psi, 2 kg/cm²).
- Wear a hard safety hat if you work in an area with suspended loads.
- Use protective hand cream.
- Immediately replace wet overalls.
- Keep the engine always clean and eliminate oil, diesel and coolant stains.
- Place greasy rags in fireproof containers.
- Do not leave foreign bodies on the engine.
- Use suitable and safety container for exhaust oil.
- When the repair is finished, take the necessary steps to stop engine air suction in case, after start-up, an unrestrained increase of engine revolution occurs.
FREQUENCY

The following frequencies take into account use factors that are typical of the different uses of the engine. The most suitable maintenance frequency will be specified by the maintenance staff based on the use and operating conditions of the engine.

<table>
<thead>
<tr>
<th>Checks during periods of use</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine lubricant level inspection</td>
<td>Daily</td>
</tr>
<tr>
<td>Inverter lubricant level inspection</td>
<td>Daily</td>
</tr>
<tr>
<td>Engine coolant level inspection</td>
<td>Daily</td>
</tr>
<tr>
<td>Exhaust pipe/s integrity inspection</td>
<td>Daily</td>
</tr>
<tr>
<td>Water drain from fuel pre-filter</td>
<td>150 hours (1)</td>
</tr>
<tr>
<td>Inspection/restoring battery electrolyte solution level and cleaning of terminals</td>
<td>Every six months</td>
</tr>
</tbody>
</table>

The following frequencies take into account use factors that are typical of the different uses of the engine. The most suitable maintenance frequency will be specified by the maintenance staff based on the use and operating conditions of the engine.

<table>
<thead>
<tr>
<th>Periodical maintenance:</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air filter/s cleaning</td>
<td>300 hours (2) (7)</td>
</tr>
<tr>
<td>Zinc anodes corrosion</td>
<td>300 hours (4) (7)</td>
</tr>
<tr>
<td>Oil vapor filter status (an indicator may be available)</td>
<td>300 hours (7)</td>
</tr>
<tr>
<td>Condensation draining/suction from fuel tank/s</td>
<td>300 hours (1) (7)</td>
</tr>
<tr>
<td>Engine lubricant replacement</td>
<td>600 hours (5) (7)</td>
</tr>
<tr>
<td>Unidirectional valve efficiency check pre-lubrication system</td>
<td>at each replacement lubricant</td>
</tr>
<tr>
<td>Oil filter/s replacement</td>
<td>600 hours (1) (7) (8)</td>
</tr>
<tr>
<td>Fuel filter/s replacement</td>
<td>600 hours (1) (7) (8)</td>
</tr>
<tr>
<td>Fuel pre-filter/s replacement</td>
<td>600 hours (1) (7)</td>
</tr>
<tr>
<td>Marine gear oil replacement</td>
<td>see relevant information</td>
</tr>
<tr>
<td>Sea water intake inspection</td>
<td>every year</td>
</tr>
<tr>
<td>Check belt tension and conditions</td>
<td>every year</td>
</tr>
<tr>
<td>Coolant replacement</td>
<td>1200 hours or 2 years</td>
</tr>
<tr>
<td>Air filter replacement</td>
<td>2 years</td>
</tr>
<tr>
<td>Oil vapor filter replacement</td>
<td>2 years (5)</td>
</tr>
</tbody>
</table>
1) Maximum period for using good quality fuel (EN 590 standard). It is reduced based on the dependency on fuel contamination and on the alarm signals for filter clogging and/or water in the filter. The filter clogging warning requires its replacement. If the water in pre-filter alarm is not disabled after draining, the filter needs to be replaced.

2) Frequency is based on ambient and efficiency/wear conditions of the product. If the engine remains unused for long periods, perform the inspection before startup.

3) N.C.

4) Replace the anode only if corrosion exceeds 50% of zinc volume.

5) Frequency applicable to lubricants as provided in REFUELLING table.

6) Comburent air/sea water exchanger: clean both air and water sections; engine coolant/sea water exchanger: clean the sea water section; inverter oil/sea water exchanger (if available): clean the sea water section.

7) To be performed every year even if the operating hours expected are not met.

8) Use only filters with the following features:
 - filtering degree < 12 μm
 - filtering efficiency $\beta > 200$.

<table>
<thead>
<tr>
<th>Extraordinary maintenance</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check sea water pump rotor wear</td>
<td>1200 hours</td>
</tr>
<tr>
<td>Check the efficiency of the pre-post heating system (if available)</td>
<td>1200 hours</td>
</tr>
<tr>
<td>Valve-rocker arms play adjustment</td>
<td>1200 hours</td>
</tr>
<tr>
<td>Auxiliary elements belt replacement</td>
<td>1200 hours or 2 years</td>
</tr>
<tr>
<td>Cleaning of heat exchangers</td>
<td>1200 hours or 2 years (6)</td>
</tr>
<tr>
<td>Supercharger cleaning</td>
<td>800 hours or 2 years (5)</td>
</tr>
</tbody>
</table>

WARNING

In case fuel sulfur percentage exceeds 0.5% or oils not meeting the specifications provided in refueling table are used, oil, engine oil filter and oil vapor filter frequencies should be halved or adjusted to the engine use and operating conditions; for more information please refer to maintenance staff.
PRESCRIPTIONS
- Do not disconnect battery power when the engine is running.
- Do not perform arch soldering near the engine without having removed all electric connections and electronic units.
- After each service, check that clamps have been securely replaced on terminals after disconnection of the battery.
- After each maintenance involving disconnection of battery clamps, make sure they have been securely tightened on the relevant poles.
- Do not start the engine using the battery charger.
- Disconnect batteries from on board power source while they are being recharged.
- Do not paint equipment, components and electrical connectors of the engine fitting.
- Disconnect batteries from power source before any electrical intervention.
- Before on board installation of any electronic equipment, contact the Yard (two-way radio, echo sounder).

HOW TO
Engine lubricant level inspection
To avoid risk of burns only proceed when the engine is not running and is cool.
- Using the dip stick (1), that the oil quantity is included between "Min" and "Max" limits.
- Refill if level is insufficient, using the hole on top of cylinder head. Remove the cap (2).
Marine gear lubricant level inspection
Check oil level in the marine gear. Follow the instructions provided in the manual provided by the marine gear manufacturer.

Coolant level inspection
Proceed only with engine not running and at low temperature to avoid any risk of burns.
- Remove the filling pan pressure cap (3 in the previous page)
- Visually check that the fluid level is a few centimetres below the filler hole.
- If necessary, top up the reservoir using a mixture as shown in the REFUELING table. Do not completely fill the reservoir.

Exhaust pipe/s integrity inspection
Visually check that the discharge system of exhaust gases is not clogged.
- Make sure there is no dangerous fumes inside the hull. Contact the Yard if necessary.

WARNINGS
- After refilling make sure oil level does not exceed "Max" on the stick.
- Insert the dip stick all the way down and tighten the cap by turning it clockwise until it comes to a full stop.

Water drain from fuel pre-filter
The high risk of refueling with fuel polluted with foreign bodies and water requires inspections to be performed even if no alarm is triggered on the on board panel. Proceed with engine not running.
- Place a basin under the pre-filter in order to collect liquids.
- Unscrew the cock plug (1) located in the pre-filter lower section; in some fittings the plug includes the diesel oil water sensor.
- Drain the liquid until it is detected as "diesel oil" only.
- Manually close the plug by screwing completely.
- Dispose drained liquids observing current regulations in force.

Check the electrolyte solution level in batteries
Proceed by placing the batteries on an horizontal plane.
- Visually inspect that the liquid level is included between "Min" and "Max". If no reference marks is available, check that the liquid covers the lead plates in the elements by approximately 5 mm (0.20 in).
- If necessary refill only with distilled water those elements whose level is lower than the minimum.
- Check that terminals and clamps are clean, securely tight and protected with petroleum oil.
Some battery types are equipped with single cover for inspection plugs. To access the items, use a lever as shown in the figure.

Air filter/s cleaning
- Remove the filter after removing retaining rod (1) and loosening the screws (2) shown in the diagram.
- Blow the filter with compressed and dehumidified air, from inside to outside (maximum pressure 200 kPa), or wash only with water. Avoid using detergents; do not use diesel oil.
- Replace if tearing is found.
- Restore regular operating conditions after having placed the filter in its housing.

WARNING!
- Batteries contain sulfuric acid which is highly caustic and corrosive. Wear safety gloves and goggles when refilling. If possible, request specialized staff to perform the check.
- Do not smoke nor start flames near the batteries during checks and make sure the room is suitably ventilated.

WARNING!
If all battery elements need topping up with a considerable quantity of distilled water, contact a specialised office and check battery and recharging system efficiency.
Zinc anodes corrosion inspection
Proceed with engine not running and at low temperature:
- Place the necessary basins in order to avoid water to spill off during removal of anodes.
- Unscrew and remove anodes (see relevant location in ENGINE TECHNICAL DATA).
- Make sure corrosion does not involve over 50% of zinc volume. Otherwise replace them.
- Replace anodes in their housing and tighten to the required torque.

Oil vapor filter status
Proceed only with engine not running and at low temperature to avoid any risk of burns.

With choke sensor:
- If the sensor indicates that the filter is clogged, replace the filter as indicated in this document.

Without choke sensor:
- Carry out disassembly as instructed for replacement.
- Check that the filter element is free of deposits. Replace with a new element if deposits are present.
- Refit the filter in its seat as described for replacement.

Engine lubricant replacement
Proceed only with engine not running and at low temperature to avoid any risk of burns.

Only with one hand pump:
- Place a container to collect the exhaust oil under the hand pump (3) exit piping (2).
- Open the extraction cock by vertically lifting the lever (1) B.
- Unscrew the oil filler cap and operate the appropriate hand pump (3), provided for the extraction of the oil, until the oil pan is completely empty.
- Refill oil through the hole provided on the cover. Refer to REFILLING table for the correct oil type. Tighten the plug.
- Using the dip stick (4), that the oil quantity is included between "Min" and "Max" limits.
Close the cock by lowering back the lever (1) to A position.
Dispose oil observing current regulations in force.

With transfer electric system (optional)

- Place under the cock (5) a container to collect the exhaust oil.
- Open the cock (1) and press (A) towards DISCHARGE, until it is fully empty.
- Connect the cock to the new oil container and press the button towards CHARGE until filling is completed.
- Close again the charge/discharge tap and check - using the oil dipstick - that the oil level in the oil sump is between the range MIN and MAX.
- Dispose oil observing current regulations in force.
- Close the plug (1).

The above operations can be performed by acting on the push button located on the electronic module. For safety reasons controls are enabled on only when the key switch is turned to 8A (stop).
- Place under the cock (5) a container to collect the exhaust oil.
- Open the cock (1) and press (A) towards DISCHARGE, until it is fully empty.
With transfer and pre-lubrication electric system (optional)
The above operations can be performed by acting on the push button located on the electronic module. For safety reasons controls are enabled on only when the key switch is turned to 8A (stop).

- Place under the cock (5 on next page) a container to collect the exhaust oil.
- Turn the EV OFF/EV ON (B) switch to EV/ON, to the electric pump will be connected to the cock.
- Open the cock (1) and press (A) to DISCHARGE, until it is fully empty.
- Connect the cock to the new oil container and press the button towards CHARGE until filling is completed.
- To allow efficient operation of the pre-lubrication system, close the filler/drainage tap and return switch B to the EV/OFF position.
- Use the dipstick to check that the sump oil level is between the “MIN” and “MAX”.
- Dispose oil observing current regulations in force.

Efficiency testing of one-way valve in the pre-lubrication system (image page 43)
Proceed with engine not running.
- Loosen the connection (6) and wait for the complete oil drain from the pre-lubrication piped.
- Start the engine and check that no oil flows out of the valve (7).
- Stop the engine and tighten the connection (6).
- Replace the valve in case of oil leaks.

WARNING!
Proceed with utmost care, considering the fluid high temperature and the presence of moving parts. Always wear suitable personal protection equipped.

Oil filter replacement
Use only filters with filtering degree equal to the above ones (see FREQUENCY).

With traditional filter support
Proceed only with engine not running and at low temperature to avoid any risk of burns, after emptying exhaust oil.
- Place under the cock (1) a container to collect the exhaust oil.
- Remove filters.
- Accurately clean surfaces.
- Moist seals of the new filters with some oil.
- Manually tighten until contact is made, then tighten again for 3/4 of turn.
- Dispose drained liquids observing current regulations in force.

With filter support and exclusion levers (optional)
The support with exclusion lever allows replacing the filter also with running engine.

WARNING!
Proceed with utmost care, considering the fluid high temperature and the presence of moving parts. Always wear suitable personal protection equipped.

WARNING!
Do not exclude both filters at the same time to avoid any damage.
Fuel filter/s replacement
Proceed only with engine not running and at low temperature to avoid any risk of burns. Use only filters with filtering degree equal to the above ones (see FREQUENCY).

With traditional filter support

- Remove filter (1) by unscrewing it.
- Moist seals of the new filters with diesel or engine oil.
- Manually tighten until contact is made, then tighten again for 3/4 of turn.
- Loosen the bleeding connection on the filter support and act on the hand pump of the pre-filter until fuel flows out without air.

- Tighten the connection and start the engine acting on the pump, also during the first startup phases.

WARNING
Do not fill the new filter before placing in on the support, to avoid allowing impurities to enter and damage the circuit and the injection system.

NOTE: to speed up automatic bleeding of residual air, loosen the fitting on the cylinder head (2) during the initial start-up, tightening it when start-up has taken place. Ensure that the fuel emerging from the fitting does not dirty the auxiliary drivebelt and is not dispersed into the atmosphere.

With filter support and switching lever (optional)
The support with switching lever allows replacing the filter also with running engine.

- Switch the lever (3, on next page) to A and replace the filter (5, on next page).
- Switch the lever (3, on next page) to B and replace the filter (4, on next page).
- Proceed as with the traditional filter.
- Bring the lever back to central position to avoid limiting the fuel delivery to the injection system.

WARNING
Do not fill the new filter before placing in on the support, to avoid allowing impurities to enter and damage the circuit and the injection system.
Fuel pre-filter/s replacement

Proceed only with engine not running and at low temperature to avoid any risk of burns.

- Remove water presence sensor (3).
- Unscrew the water sensor (3) from the old pre-filter.
- Check that the new filter matches the engine requirements.
- Moist seals of the new filters with diesel or engine oil.
- Manually tighten until contact is made, then tighten again for 3/4 of turn.
- Replace the water sensor and check that threads match.
- Unscrew the bleeding connection (2) act on the manual pump (1) on the pre-filter support until the circuit is full.
- Start the engine and keep it running at idle to remove air excess.
- Check pre-filter support (4) grounding.

WARNING!

Proceed with utmost care, considering the fluid high temperature and the presence of moving parts. Always wear suitable personal protection equipped.
Check tension and conditions of auxiliary parts belt

Proceed only with engine not running and at low temperature to avoid any risk of burns.

- Remove pulley protection.
- Check that there are no tears in the belt and that it shows no obvious signs of wear and tear or of soiling from oil or fuel. Replace belt if these signs are present.
- Check tensioner efficiency by applying the tool to the tensioner as shown in the figure.
- Replace casing and tighten fastenings.

Coolant replacement

Proceed only with engine not running and at low temperature to avoid any risk of burns.

- Use basins to avoid coolant dispersion in the environment.
- Remove plugs on the circuit and wait for it to bleed completely (see ENGINE TECHNICAL DATA for location). When empty, replace the plugs back in their seats replacing the gaskets.
- Refill the circuit as described in REFILLING table.
- Degas and refill the circuit as instructed in section PRESCRIPTIONS FOR FIRST START-UP.

Oil vapor filter replacement

Proceed only with engine not running and at low temperature to avoid any risk of burns.

- Remove engine fittings to access filter housing.
- Loosen screws, remove filter housing cover (1).
- Remove and dispose the filter (2) observing current regulations in force.
- Slide the new filter, observing the assembling direction. Reinforcing items (3) should be visible.
- Replace the cover on its housing and replace the components removed to restore the engine to its original specification.
Condensation draining/suction from fuel tank/s
Sea water intake inspection
Check sea water pump rotor wear
Check the efficiency of the pre-post heating system
Valve-rocker arms play adjustment
Cleaning of heat exchangers
Supercharger cleaning

See the marine gear Manufacturer's handbook.

WARNING!

The filter (2) has unidirectional efficiency and should be placed with the two reinforcing items visible (3) as shown in the picture.

WARNING

Only FPT Servicing Centers or Yard staff may perform the following operations.
Please refer to the relevant technical and repair manuals.

Only FPT Servicing Centers or Yard staff may perform the following operations.
Please refer to the relevant technical and repair manuals.
MOVING THE ENGINE

Only Servicing Center staff can perform such operations.
To lift only the engine use the eyelets specified herein in the ENGINE TECHNICAL DATA section.
Lift using a rocker arm and keep ropes parallel, using the eyelets provided simultaneously. Use in smaller quantities than specified is not permitted. The engine lifting system should be suited to the engine weight and clearance. Make sure there is no interference between the lifting system and engine organs.
Do not lift the engine before removing its transmission organs.

EXHAUST PARTS DISMISSAL

The engine assembly includes parts and items which may cause ecological damages if released in the environment.
The materials listed should be delivered to special collection centers. Current regulations in different countries provide for severe punishment of transgressors.

- Start-up batteries.
- Exhaust lubricant oils.
- Water and deicer mixtures.
- Filters.
- Cleaning auxiliary material (ex. greaser rugs or soaked with fuel).
LONG ENGINE INACTIVITY

ENGINE PREPARATION FOR LONG INACTIVITY PERIODS

In case of prolonged inactivity and order to avoid oxidation of internal parts of the engine and of some components of the injection system, prepare the engine as follows:

1. Drain the lubricant oil from the pan, after warming up the engine.
2. Fill with 30/M protective oil (or an oil compliant with MIL 2160B type 2 specifications) until "minimum" level is reached on the dip stick. Start the engine and keep it running for 5 minutes.
3. Bleed the fuel from the injection circuit, the filter and from the injection pump piping.
4. Connect the fuel circuit to a tank containing protective liquid CFB (ISO 4113) and run the engine for 2 minutes after cutting out the injection system. This can be done by energizing terminal 50 on the starter with positive voltage equal to the system rate voltage, using a conductor:
5. Spray approximatively 80 g of protective oil 30/M (10 g per liter of swept volume) on the supercharger suction intake, during the above motoring.
6. Close with plugs or seal any opening.
7. Drain any residual 30/M oil. Store for future use (enough for 2 preparations).
8. Apply ENGINE WITH NO OIL labels to the engine and on board panel.

9. Drain coolant, and place a label stating the operation has been completed.

In case of extended inactivity, repeat the above every 6 month, as follows:
A) Drain from 30/M protective oil;
B) Repeat from step 2.

In case protection of engine external parts is required, spray all unpainted surfaces with OVER 19 AR protection liquid, avoiding belts, cable connections and electric parts.
COMMISSIONING AFTER AN EXTENDED PERIOD OF INACTIVITY

1. Drain any residual 30/M protective oil.
2. Fill the engine with lubricating oil as provided in REFUELLING table.
3. Drain any protective liquid from the fuel circuit and follow the instructions provided in point 3 ENGINE PREPARATION FOR LONG INACTIVITY PERIODS.
4. Remove any closing and/or sealant. Connect the supercharger intake to the air filter.
5. Connect fuel circuits to the boat tank and follow the instructions provided in point 4 in ENGINE PREPARATION FOR LONG INACTIVITY PERIODS.
6. Check and refill the engine with coolant, as instructed.
7. Start the engine and keep it running until idle speed is stable.
8. Check that readings are acceptable and that no alarm is on.
9. Stop the engine.
10. Remove ENGINE WITH NO OIL labels from the engine and on board panel.

FIRST START-UP AFTER LONG INACTIVITY PERIODS

1. Refill the engine as provided in REFUELLING table.
2. Remove the sacrificial anode (1) and fill with 1.5 liters of water, in order to start the sea water pump.
3. Place the anode back into its housing and tighten as provided.
4. Degas the cooling circuit as follows:

Leave the engine idling and carefully loosen the screw (2) positioned on the coolant reservoir beside the cap and the two screws (3) positioned on the exhaust manifold to help bleed any remaining air. After sufficient time, tighten the screws to the recommended torque, shut down the engine and recheck coolant level, topping up if necessary. Do not disperse in the environment any liquid.
ENGINE FAULTS

The electronic unit overseeing management and control of all operation of the engine is capable of recognising any malfunctions that may occur, and of adopting strategies that will allow you to navigate in full safety.

The event, signalled by light-up of the EDC MALFUNCTION indicator on the on-board control panels, results in programmed limitation of power whitin certain threeshold, set accordind to the severity of the case.

In the case of temporary malfunctions the reduction in performance will remain in force until the engine is stopped.

Fault in the accelerator electronic circuit

When the CENTRAL ELECTRONIC UNIT detects any fault, the strategies specified in "Accelerated minimum idle speed" section should be adopted, in order to proceed with emergency navigation.

Available operating modes are:

A. Accelerator lever “not responding”: revolution sets to 750 rpm to allow slow navigation and maneuvering operating only on the inverter, without accelerating.

B. The accelerator lever “responds partially”: engine speed with the lever at minimum is equal to 750 rpm. If you bring the accelerator to half way of its travel, the speed progressively increases to 2000 rpm. If you bring back the lever, speed will go rapidly back to 750 rpm.

NOTE: The “A” mode allows using higher speeds and managing start/stop functions as detailed in ENGINE OPERATION FROM RELAY BOX.

Always, observe accident prevention precautions detailed in INSPECTIONS AND MAINTENANCE.

WARNING!

The engine electronic unit may adopt safety strategies any time during navigation, whenever any risk condition for the engine is detected.

When such conditions arise, proceed with utmost care, and check that everyone on board is holding on securely.

WARNING!

Engine operation from “Relay box” disables bridge controls; therefore from the bridge the only way to stop the engine is to act on the inverter disconnect lever.
EMERGENCY ON BOARD

The boat user, if observing the instructions contained in this manual, will always be acting in safe conditions. In case of accident, always request the immediate intervention of rescue staff. The following is to be observed in case of emergency while waiting for rescue staff to arrive.

Engine brakedown

When navigating with broken engine, use utmost care when maneuvering and check that people on board is holding on securely. (see ENGINE BRAKEDOWN).

Fire

Extinguish using the equipment on board as required by competent authorities (current safety regulations provide for fire equipment on board).

Burns

1. Extinguish flames on clothing using:
 • water;
 • dust fire extinguisher;
 • blankets or rolling the victim on the floor.
2. Do not remove pieces on fabric from skin.
3. In case of burning from liquids, immediately but carefully remove soaked clothes.
4. Cover the burn with special sterile bending.

Carbon oxide intoxicationn (CO)

Carbon oxide contained in exhaust gases can be very dangerous. In closed rooms it is very dangerous because it can reach dangerous concentration is a short time.

In case of intoxication in a closed environment:
1. Immediately vent the room.
2. Hold your breath when entering the room, do not turn on light, or activate any electric device including phones, to avoid explosions.
3. Bring the injured person outside.
Electrocution

The electric system does not involve electrocution however in case of short circuit, some risk of burn may arise. In such case:

1. Turn away the tool causing the short circuit using suitably thermally insulated means.
2. Turn off the mains, if available.

Injures or fractures

Seek for immediate medical help.

1. In case of strong bleeding, press the wound until first aid arrives.
2. In case of fractures, do not move the part of the body involved and transfer the patient very carefully, and only if extremely necessary.

Skin burns

This may result from contact with acid substances. This usually happens when liquid flows out of the battery. In such case:

1. Remove any soaked clothing.
2. Wash thoroughly with water only the parts involved.

In case of eye contact with battery acid or lubricant or diesel oil: wash the eye with water for at least 20 minutes keeping your eyelids wide shut to that water flows over the ocular bulb (move the eye to every direction for better washing).
OIL VISCOSITY COMPARED TO AMBIENT TEMPERATURES

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 °C

SAE 10W

SAE 20W

SAE 30

SAE 40

SAE 10W -30

SAE 10W -40

SAE 10W -60

SAE 15W -40 mineral base

SAE 15W -40 semisynthetic base

SAE 20W -60 semisynthetic base

SAE 5W -30 synthetic base

SAE 0W -30 synthetic base

-31 -22 -13 -4 5 14 23 32 41 50 59 68 77 86 95 104 113 122 °F
ON BOARD PANELS REQUIREMENTS
The following refers to the original configuration of FPT equipment. The requirements and technical features of customizations may be different. Refer to the original manufacturer for further information.

<table>
<thead>
<tr>
<th>FPT on board panels</th>
<th>With analog instruments</th>
<th>With digital instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating ambient conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-10°C to +60°C</td>
<td>-10°C to +60°C</td>
</tr>
<tr>
<td>Temperature limits during parking</td>
<td>min. -20°C / max. +75°C</td>
<td>min. -20°C / max. +75°C</td>
</tr>
<tr>
<td>Dust and rain protection degree (frontal)</td>
<td>IP 65 – DIN 40050 – IEC 529</td>
<td>IP 66</td>
</tr>
<tr>
<td>Salt mist resistance (reference standard)</td>
<td>IEC 60068-2-52</td>
<td>IEC 60068-2-52</td>
</tr>
<tr>
<td>Electric and electromagnetic characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating voltage (excluding polarity inversions)</td>
<td>min. 9 V / max. 32 V (*)</td>
<td>min. 9 V / max. 32 V (*)</td>
</tr>
<tr>
<td>Maximum allowed over-voltage</td>
<td>60 V per 1 ms</td>
<td>60 V per 1 ms</td>
</tr>
<tr>
<td>Main panel maximum absorbed power</td>
<td>1.1 A (12 V) – 1 A (24 V)</td>
<td>310 mA (12 V) – 200 mA (24 V)</td>
</tr>
<tr>
<td>Secondary panel maximum absorbed power</td>
<td>400 mA (12 V) – 400 mA (24 V)</td>
<td>310 mA (12 V) – 200 mA (24 V)</td>
</tr>
<tr>
<td>Electromagnetic compatibility (reference standard)</td>
<td>IEC 945</td>
<td>IEC 945</td>
</tr>
<tr>
<td>Cabling connectors requirements (reference standard)</td>
<td>MIL 1344/1001</td>
<td>MIL 1344/1001</td>
</tr>
<tr>
<td>Cables requirements (reference standard)</td>
<td>CEI 20/22 - CEI 20/38 - CEI 2000/532/CE</td>
<td></td>
</tr>
<tr>
<td>Mechanical features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to vibrations (expressed in gravity acceleration)</td>
<td>1 g eff. max. -25-500 Hz</td>
<td>(2g) 0.07 oz eff. max. -25-500 Hz</td>
</tr>
<tr>
<td>Resistance to shocks (expressed in gravity acceleration)</td>
<td>15 g - 1.5 ms - semi-sinusoidal wave</td>
<td>15 g - 1.5 ms - semi-sinusoidal wave</td>
</tr>
</tbody>
</table>

(*) min. 9 V / max. 16 V referring to equipment for which only 12 V nominal voltage is provided.
DIGITAL INSTRUMENT PANEL - PREVIOUS VERSION

Engine start-up and shut-down from FPT digital instrument panel

(Not applicable to C13 ENT M77 engine)

Startup procedure from main panel

Make sure that the electric switch with ENGINE ROOM - BRIDGE label on the Relay box unit, (usually located in the engine room) is turned to BRIDGE, then proceed as follows:

1. Lift the key switch safety cover (8), insert the key and turn it to the right, to **8B** position.
2. Check that the analog instruments provide acceptable reading with the new values of the relevant physical parameters.
3. Wait for the acoustic alarm to stop and that the warning lights (5) on the signaling module are switched off (except for "alternator anomaly" and "oil low pressure"). At the same time check that testing of indicators is successful (see relevant section RECOGNIZING ALARM STATUSES).
4. Turn the key to **8C** position and release it without accelerating when the engine has started.
5. Check that the analog instruments provide acceptable reading with the new values of the relevant physical parameters (temperature, battery voltage and oil pressure).
6. In case startup fails, you can resume startup position only after releasing the key and after turning the switch **8A** to stop position.

1. Engine coolant temperature indicator
2. Lubrication circuit pressure indication
3. Service and alarm signals
4. Revolution counter
5. Air booster pressure indicator
6. Voltmeter
7. Alphanumeric display
8. Engine start/stop key switch
9. Accessory functions programming key
10. Additional information slide selection key
11. "Programmed maintenance" reset key
12. Horn silencer
13. Horn

Switch key detail
Startup procedure from secondary panel or fly-bridge

1. Enable the secondary panel operation by turning the key switch on the main panel to **8B** position (see instructions described in the previous paragraph).

2. Wait for the acoustic alarm to stop and that the warning lights (5) on the signaling module are switched off (except for "alternator anomaly" and "oil low pressure"). At the same time check that testing of indicators is successful (see relevant section RECOGNIZING ALARM STATUSES).

3. Press the green START (11) push button and release it when the engine has started. Check that instruments and analogic reading are acceptable.

Engine stop

Before stopping the engine it is recommended to keep it running at idle and unloaded for few minutes; this will allow for a uniform reduction of temperature and avoid harmful thermal shocks.

A. From the main panel: rotate the key switch to the stop 8A position.

B. From the secondary panel: press the red STOP push button (8) located on it.

To restart the engine from the main panel:
1. Turn the key switch to the stop position 8A to reset any panel operation enabled.
2. Proceed as shown in the relevant paragraph.

To restart the engine from the secondary panel:
1. Make sure the panel is enabled (key switch on the main panel turned to 8B).
2. Press the green START (11) push button and release it when the engine has started. Check that instruments and analogic reading are acceptable.

RECOGNIZING ALARM STATUSES

The following the legend contains the meaning of the alarm pictorial corresponding to each light indicator on the main and secondary panel; in some engine type and relevant fitting are not equipped with all of the features mentioned herein. Moreover these instructions may change based on the technical features provided by the boat manufacturer.

* Alarm features not available with standard fitting.
Operation
By rotating the key switch to 8B position the module performs a 5 seconds efficiency test of all light indicators, except for those concerning “Pre-lubrication”, “Pre-post heating”, “EDC system fault”, and the horn beeps. The beep may be silenced before the end of the test, by pushing the relevant button.
During the startup phase and for the next 15 seconds, any alarm function is inhibited; after such time interval each alarm condition detected by sensors on the engine causes the relevant indicator to blink and a simultaneous sound signal. The sound alarm silencing obtained by pressing the relevant push button causes the non-blinking indicator to turn on and saves the alarm until the next engine stop.

Alphanumeric display
The information provided by this indicator are:
• engine revolution speed
• total hours of operation (see note A)
• exhaust gases temperature (upon request)
• instant fuel consumption (see note B)
To select the requested information, press the "Slide selection" push button available on the main and secondary panel.

Detail of the main panel

(A)The electronics inside the panel is programmed in order to combine the hours of operation to the release of the warning when the ordinary maintenance hours limit has been reached. This feature requires that after each maintenance intervention, the count is reset from the main panel as follows:
- Press and hold the "Prog" (9) and "Slide selection" (10) buttons, turn the key switch from 8A position to 8B and wait for the display to show the previous data set (ex.: 600 hours). Release the buttons and press only once the "Prog" button (9) to restart the new count.
In case the information set does not correspond to what provided for the type of oil used (see REFUELLING and FREQUENCY), proceed as follows:

- After having displayed the hour information previously set, release the push buttons and repeatedly press only the "Slide selection" (10) button until the required information blinks (as detailed in FREQUENCY section), then press "Prog" (9) to confirm the information and start a new count.

(B) The information regarding the immediate fuel consumption require the correct programming of the maximum information entered relating to the engine performances. To check proceed as follows:

- Press and hold the "Prog" key (9) until the display reads the maximum value entered (ex.: 195 mg/trk), then release it and compare the information with those provided in the tale below.
- In case it does not correspond, you can change it by repeatedly pressing the "Slide selection" (10) button until the required one it displayed (blinking mode).
- Press and hold the "Prog" (9) button until the engine revolution speed is displayed, meaning that the information has been saved.

In case of any mistake in the programming procedure, the display reading will be "Pr. Err.". You will need to repeat the procedure.

<table>
<thead>
<tr>
<th>C13 ENS M33</th>
<th>Maximum power (CV)</th>
<th>Maximum insertion (mg/strk)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>330</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C13 ENT M50</th>
<th>Maximum power (CV)</th>
<th>Maximum insertion (mg/strk)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>520</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>299</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C13 ENT M77</th>
<th>Maximum power (CV)</th>
<th>Maximum insertion (mg/strk)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>770</td>
<td></td>
</tr>
<tr>
<td></td>
<td>700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>540</td>
<td></td>
</tr>
</tbody>
</table>